Küng Christoph, Protsenko Olena, Vanella Rosario, Nash Michael A
Department of Chemistry, Institute of Physical Chemistry, University of Basel, Basel, Switzerland.
Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
Protein Sci. 2025 May;34(5):e70112. doi: 10.1002/pro.70112.
Engineering protein stability is a critical challenge in biotechnology. Here, we used massively parallel deep mutational scanning (DMS) to comprehensively explore the mutational stability landscape of human myoglobin (hMb) and identify key mutations that enhance stability. Our DMS approach involved screening over 10,000 hMb variants by yeast surface display, single-cell sorting, and high-throughput DNA sequencing. We show how surface display levels serve as a proxy for thermostability of soluble hMb variants and report strong correlations between DMS-derived display levels and top-performing machine learning stability prediction algorithms. This approach led to the discovery of a variant with a de novo disulfide bond between residues R32C and C111, which increased thermostability by >12°C compared with wild-type hMb. By combining single stabilizing mutations with R32C, we engineered combinatorial variants that exhibited predominantly additive effects on stability with minimal epistasis. The most stable combinatorial variant exhibited a denaturation temperature exceeding 89°C, representing a >17°C improvement over wild-type hMb. Our findings demonstrate the capabilities in DMS-assisted combinatorial protein engineering to guide the discovery of thermostable variants and highlight the potential of massively parallel mutational analysis for the development of proteins for industrial and biomedical applications.
工程化蛋白质稳定性是生物技术领域的一项关键挑战。在此,我们使用大规模平行深度突变扫描(DMS)全面探索了人肌红蛋白(hMb)的突变稳定性图谱,并确定了增强稳定性的关键突变。我们的DMS方法包括通过酵母表面展示、单细胞分选和高通量DNA测序筛选超过10,000个hMb变体。我们展示了表面展示水平如何作为可溶性hMb变体热稳定性的指标,并报告了DMS衍生的展示水平与表现最佳的机器学习稳定性预测算法之间的强相关性。这种方法导致发现了一种在残基R32C和C111之间具有新生二硫键的变体,与野生型hMb相比,其热稳定性提高了>12°C。通过将单个稳定突变与R32C组合,我们构建了组合变体,这些变体在稳定性上主要表现出加性效应,上位性最小。最稳定的组合变体的变性温度超过89°C,比野生型hMb提高了>17°C。我们的研究结果证明了DMS辅助组合蛋白质工程在指导发现热稳定变体方面的能力,并突出了大规模平行突变分析在开发用于工业和生物医学应用的蛋白质方面的潜力。