Dipartimento di Ingegneria Civile Chimica e Ambientale, Università degli Studi di Genova, Genova, Italia.
ISMAR-CNR, S.S. di Lerici, Lerici, SP, Italia.
PLoS One. 2019 Jul 26;14(7):e0217073. doi: 10.1371/journal.pone.0217073. eCollection 2019.
Absolute and relative dispersion are fundamental quantities employed in order to assess the mixing strength of a basin. There exists a time scale called Lagrangian Integral Scale associated to absolute dispersion that highlights the occurrence of the transition from a quadratic dependence on time to a linear dependence on time. Such a time scale is commonly adopted as an indicator of the duration needed to lose the influence of the initial conditions. This work aims to show that in a semi-enclosed basin the choice of the formulation in order to calculate the absolute dispersion can lead to different results. Moreover, the influence of initial conditions can persist beyond the Lagrangian Integral Scale. Such an influence can be appreciated by evaluating absolute and relative dispersion recursively by changing the initial conditions. Furthermore, finite-size Lyapunov exponents characterize the different regimes of the basin.
绝对和相对离散度是用于评估盆地混合强度的基本量。存在一个与绝对离散度相关的拉格朗日积分尺度时间标度,该标度突出了从二次时间依赖到线性时间依赖的转变的发生。该时间标度通常被用作指示失去初始条件影响所需的持续时间的指标。本工作旨在表明,在半封闭盆地中,为了计算绝对离散度而选择的公式可能会导致不同的结果。此外,初始条件的影响可以持续超过拉格朗日积分尺度。通过改变初始条件递归地评估绝对和相对离散度,可以看出这种影响。此外,有限大小的 Lyapunov 指数表征了盆地的不同状态。