Colebank Mitchel J, Umar Qureshi M, Olufsen Mette S
Department of Mathematics, North Carolina State University, Raleigh, North Carolina.
Int J Numer Method Biomed Eng. 2021 Nov;37(11):e3242. doi: 10.1002/cnm.3242. Epub 2019 Sep 10.
Pulmonary hypertension (PH), defined as an elevated mean blood pressure in the main pulmonary artery (MPA) at rest, is associated with vascular remodeling of both large and small arteries. PH has several sub-types that are all linked to high mortality rates. In this study, we use a one-dimensional (1-D) fluid dynamics model driven by in vivo measurements of MPA flow to understand how model parameters and network size influence MPA pressure predictions in the presence of PH. We compare model predictions with in vivo MPA pressure measurements from a control and a hypertensive mouse and analyze results in three networks of increasing complexity, extracted from micro-computed tomography (micro-CT) images. We introduce global scaling factors for boundary condition parameters and perform local and global sensitivity analysis to calculate parameter influence on model predictions of MPA pressure and correlation analysis to determine a subset of identifiable parameters. These are inferred using frequentist optimization and Bayesian inference via the Delayed Rejection Adaptive Metropolis (DRAM) algorithm. Frequentist and Bayesian uncertainty is computed for model parameters and MPA pressure predictions. Results show that MPA pressure predictions are most sensitive to distal vascular resistance and that parameter influence changes with increasing network complexity. Our outcomes suggest that PH leads to increased vascular stiffness and decreased peripheral compliance, congruent with clinical observations.
肺动脉高压(PH)定义为静息时主肺动脉(MPA)平均血压升高,与大、小动脉的血管重塑相关。PH有几种亚型,均与高死亡率相关。在本研究中,我们使用由MPA血流的体内测量驱动的一维(1-D)流体动力学模型,以了解在存在PH的情况下模型参数和网络大小如何影响MPA压力预测。我们将模型预测与来自对照小鼠和高血压小鼠的体内MPA压力测量结果进行比较,并分析从微型计算机断层扫描(micro-CT)图像中提取的三个复杂度不断增加的网络中的结果。我们引入边界条件参数的全局缩放因子,并进行局部和全局敏感性分析以计算参数对MPA压力模型预测的影响,以及进行相关性分析以确定可识别参数的子集。这些是通过频率论优化和经由延迟拒绝自适应 metropolis(DRAM)算法的贝叶斯推理来推断的。计算模型参数和MPA压力预测的频率论和贝叶斯不确定性。结果表明,MPA压力预测对远端血管阻力最敏感,并且参数影响随网络复杂度增加而变化。我们的结果表明,PH导致血管硬度增加和外周顺应性降低,这与临床观察结果一致。