Suppr超能文献

DNA 甲基化对癌症蛋白质组的影响。

The impact of DNA methylation on the cancer proteome.

机构信息

Biomedical Informatics Training Program, Department of Biomedical Data Science, Stanford University, Palo Alto, California, United States of America.

Department of Bioengineering, Stanford University, Palo Alto, California, United States of America.

出版信息

PLoS Comput Biol. 2019 Jul 29;15(7):e1007245. doi: 10.1371/journal.pcbi.1007245. eCollection 2019 Jul.

Abstract

Aberrant DNA methylation disrupts normal gene expression in cancer and broadly contributes to oncogenesis. We previously developed MethylMix, a model-based algorithmic approach to identify epigenetically regulated driver genes. MethylMix identifies genes where methylation likely executes a functional role by using transcriptomic data to select only methylation events that can be linked to changes in gene expression. However, given that proteins more closely link genotype to phenotype recent high-throughput proteomic data provides an opportunity to more accurately identify functionally relevant abnormal methylation events. Here we present a MethylMix analysis that refines nominations for epigenetic driver genes by leveraging quantitative high-throughput proteomic data to select only genes where DNA methylation is predictive of protein abundance. Applying our algorithm across three cancer cohorts we find that using protein abundance data narrows candidate nominations, where the effect of DNA methylation is often buffered at the protein level. Next, we find that MethylMix genes predictive of protein abundance are enriched for biological processes involved in cancer including functions involved in epithelial and mesenchymal transition. Moreover, our results are also enriched for tumor markers which are predictive of clinical features like tumor stage and we find clustering using MethylMix genes predictive of protein abundance captures cancer subtypes.

摘要

异常的 DNA 甲基化会扰乱癌症中正常的基因表达,并广泛促进肿瘤发生。我们之前开发了 MethylMix,这是一种基于模型的算法方法,用于识别受表观遗传调控的驱动基因。MethylMix 通过使用转录组数据仅选择与基因表达变化相关的甲基化事件,从而识别可能发挥功能作用的甲基化基因。然而,鉴于蛋白质更紧密地将基因型与表型联系起来,最近高通量蛋白质组学数据提供了一个机会,可以更准确地识别功能相关的异常甲基化事件。在这里,我们提出了一种 MethylMix 分析方法,通过利用定量高通量蛋白质组学数据来选择仅与 DNA 甲基化可预测蛋白质丰度的基因,从而对表观遗传驱动基因的提名进行优化。我们将我们的算法应用于三个癌症队列,发现使用蛋白质丰度数据可以缩小候选提名的范围,其中 DNA 甲基化的影响在蛋白质水平上经常被缓冲。接下来,我们发现可预测蛋白质丰度的 MethylMix 基因富集了与癌症相关的生物学过程,包括涉及上皮和间充质转化的功能。此外,我们的结果还富集了肿瘤标志物,这些标志物可预测肿瘤分期等临床特征,我们发现使用可预测蛋白质丰度的 MethylMix 基因进行聚类可以捕获癌症亚型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64b4/6695193/f31074024d68/pcbi.1007245.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验