Suppr超能文献

孔隙压力扩散受孔隙弹性应力增强控制,控制了俄克拉荷马州的诱发地震活动。

Pore-pressure diffusion, enhanced by poroelastic stresses, controls induced seismicity in Oklahoma.

机构信息

School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281;

Department of Earth and Planetary Science, University of California, Berkeley, CA 94709.

出版信息

Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16228-16233. doi: 10.1073/pnas.1819225116. Epub 2019 Jul 29.

Abstract

Induced seismicity linked to geothermal resource exploitation, hydraulic fracturing, and wastewater disposal is evolving into a global issue because of the increasing energy demand. Moderate to large induced earthquakes, causing widespread hazards, are often related to fluid injection into deep permeable formations that are hydraulically connected to the underlying crystalline basement. Using injection data combined with a physics-based linear poroelastic model and rate-and-state friction law, we compute the changes in crustal stress and seismicity rate in Oklahoma. This model can be used to assess earthquake potential on specific fault segments. The regional magnitude-time distribution of the observed magnitude (M) 3+ earthquakes during 2008-2017 is reproducible and is the same for the 2 optimal, conjugate fault orientations suggested for Oklahoma. At the regional scale, the timing of predicted seismicity rate, as opposed to its pattern and amplitude, is insensitive to hydrogeological and nucleation parameters in Oklahoma. Poroelastic stress changes alone have a small effect on the seismic hazard. However, their addition to pore-pressure changes can increase the seismicity rate by 6-fold and 2-fold for central and western Oklahoma, respectively. The injection-rate reduction in 2016 mitigates the exceedance probability of M5.0 by 22% in western Oklahoma, while that of central Oklahoma remains unchanged. A hypothetical injection shut-in in April 2017 causes the earthquake probability to approach its background level by ∼2025. We conclude that stress perturbation on prestressed faults due to pore-pressure diffusion, enhanced by poroelastic effects, is the primary driver of the induced earthquakes in Oklahoma.

摘要

由于能源需求的增加,与地热资源开发、水力压裂和废水处理有关的诱发地震正逐渐成为一个全球性问题。中等强度到大地震,造成广泛危害,往往与流体注入深部可渗透地层有关,这些地层与下面的结晶基底水力相连。我们使用注入数据结合基于物理的线性孔隙弹性模型和速率状态摩擦律,计算了俄克拉荷马州地壳应力和地震率的变化。该模型可用于评估特定断层段的地震潜力。2008-2017 年观测到的 M3+地震的区域震级-时间分布是可重现的,与为俄克拉荷马州提出的 2 个最佳共轭断层方位相同。在区域尺度上,地震活动率的预测时间与其模式和幅度相比,对俄克拉荷马州的水文地质和核形成参数不敏感。孔隙弹性应力变化本身对地震危害的影响很小。然而,将其与孔隙压力变化相加,可使俄克拉荷马州中部和西部的地震活动率分别增加 6 倍和 2 倍。2016 年的注水量减少将使俄克拉荷马州西部 M5.0 的超越概率降低 22%,而俄克拉荷马州中部的则保持不变。2017 年 4 月假设的注水井关闭将使地震概率在 2025 年左右接近其背景水平。我们的结论是,孔隙压力扩散引起的预应力断层上的应力扰动,加上孔隙弹性效应的增强,是俄克拉荷马州诱发地震的主要驱动因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db5/6697790/d600220d7dc0/pnas.1819225116fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验