Geophysics Group, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, 87545, USA.
School of Geosciences, University of Oklahoma, Norman, 73069, USA.
Sci Rep. 2022 Jun 4;12(1):9319. doi: 10.1038/s41598-022-13435-3.
Oklahoma earthquakes in the past decade have been mostly associated with wastewater injection. Here we use a machine learning technique-the Random Forest to forecast induced seismicity rate in Oklahoma based on injection-related parameters. We split the data into training (2011.01-2015.05) and test (2015.06-2020.12) periods. The model forecasts seismicity rate during the test period based on input features, including operational parameters (injection rate and pressure), geological information (depth to basement), and modeled pore pressure and poroelastic stress. The results show overall good match with observed seismicity rate (adjusted [Formula: see text] of 0.75). The model shows that pore pressure rate and poroelastic stressing rates are the two most important features in forecasting. The absolute values of pore pressure and poroelastic stress, and the injection rate itself, are less important than the stressing rates. These findings further emphasize that temporal changes of stressing rates would lead to significant changes in seismicity rates.
过去十年,俄克拉荷马州的地震主要与废水注入有关。在这里,我们使用机器学习技术——随机森林,根据与注入相关的参数来预测俄克拉荷马州诱发地震的速度。我们将数据分为训练期(2011.01-2015.05)和测试期(2015.06-2020.12)。该模型根据输入特征,包括操作参数(注入率和压力)、地质信息(基底深度)以及模型化的孔隙压力和孔隙弹性应力,来预测测试期间的地震速度。结果与观测到的地震速度总体上吻合较好(调整[公式:见文本]为 0.75)。该模型表明,孔隙压力率和孔隙弹性应力率是预测中最重要的两个特征。孔隙压力和孔隙弹性应力的绝对值以及注入率本身,都不如应力度重要。这些发现进一步强调,应力度的时间变化将导致地震速度的显著变化。