Suppr超能文献

Cirrus:一种基于乳腺X线摄影、基于纹理特征的乳腺癌风险自动测量方法。

Cirrus: An Automated Mammography-Based Measure of Breast Cancer Risk Based on Textural Features.

作者信息

Schmidt Daniel F, Makalic Enes, Goudey Benjamin, Dite Gillian S, Stone Jennifer, Nguyen Tuong L, Dowty James G, Baglietto Laura, Southey Melissa C, Maskarinec Gertraud, Giles Graham G, Hopper John L

机构信息

Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia.

Faculty of Information Technology, Monash University, Clayton, Victoria, Australia.

出版信息

JNCI Cancer Spectr. 2018 Dec 7;2(4):pky057. doi: 10.1093/jncics/pky057. eCollection 2018 Oct.

Abstract

BACKGROUND

We applied machine learning to find a novel breast cancer predictor based on information in a mammogram.

METHODS

Using image-processing techniques, we automatically processed 46 158 analog mammograms for 1345 cases and 4235 controls from a cohort and case-control study of Australian women, and a cohort study of Japanese American women, extracting 20 textural features not based on pixel brightness threshold. We used Bayesian lasso regression to create individual- and mammogram-specific measures of breast cancer risk, Cirrus. We trained and tested measures across studies. We fitted Cirrus with conventional mammographic density measures using logistic regression, and computed odds ratios (OR) per standard deviation adjusted for age and body mass index.

RESULTS

Combining studies, almost all textural features were associated with case-control status. The ORs for Cirrus measures trained on one study and tested on another study ranged from 1.56 to 1.78 (all <10). For the Cirrus measure derived from combining studies, the OR was 1.90 (95% confidence interval [CI] = 1.73 to 2.09), equivalent to a fourfold interquartile risk ratio, and was little attenuated after adjusting for conventional measures. In contrast, the OR for the conventional measure was 1.34 (95% CI = 1.25 to 1.43), and after adjusting for Cirrus it became 1.16 (95% CI = 1.08 to 1.24; =4 × 10).

CONCLUSIONS

A fully automated personal risk measure created from combining textural image features performs better at predicting breast cancer risk than conventional mammographic density risk measures, capturing half the risk-predicting ability of the latter measures. In terms of differentiating affected and unaffected women on a population basis, Cirrus could be one of the strongest known risk factors for breast cancer.

摘要

背景

我们应用机器学习,基于乳房X光片信息寻找一种新型乳腺癌预测指标。

方法

利用图像处理技术,我们自动处理了来自澳大利亚女性队列及病例对照研究以及日裔美国女性队列研究中的1345例病例和4235例对照的46158张模拟乳房X光片,提取了20种不基于像素亮度阈值的纹理特征。我们使用贝叶斯套索回归来创建个体及乳房X光片特异性的乳腺癌风险指标Cirrus。我们在各项研究中对该指标进行训练和测试。我们使用逻辑回归将Cirrus与传统乳房X光片密度指标进行拟合,并计算调整年龄和体重指数后每标准差的比值比(OR)。

结果

综合各项研究,几乎所有纹理特征都与病例对照状态相关。在一项研究中训练并在另一项研究中测试的Cirrus指标的OR值范围为1.56至1.78(均<10)。对于综合研究得出的Cirrus指标,OR为1.90(95%置信区间[CI]=1.73至2.09),相当于四倍的四分位数间距风险比,在调整传统指标后几乎没有减弱。相比之下,传统指标的OR为1.34(95%CI=1.25至1.43),在调整Cirrus后变为1.16(95%CI=1.08至1.24;=4×10)。

结论

通过组合纹理图像特征创建的全自动个人风险指标在预测乳腺癌风险方面比传统乳房X光片密度风险指标表现更好,捕获了后者指标一半的风险预测能力。在总体上区分患癌和未患癌女性方面,Cirrus可能是已知最强的乳腺癌风险因素之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4853/6649799/6703ce09c55f/pky057f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验