Suppr超能文献

基于科学影响力的数据驱动型会议演讲者选择,以实现性别均等。

Data-driven selection of conference speakers based on scientific impact to achieve gender parity.

机构信息

Discipline of Psychology, College of Science, Health, Engineering, and Education, Murdoch University, Perth, Australia.

School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.

出版信息

PLoS One. 2019 Jul 31;14(7):e0220481. doi: 10.1371/journal.pone.0220481. eCollection 2019.

Abstract

A lack of diversity limits progression of science. Thus, there is an urgent demand in science and the wider community for approaches that increase diversity, including gender diversity. We developed a novel, data-driven approach to conference speaker selection that identifies potential speakers based on scientific impact metrics that are frequently used by researchers, hiring committees, and funding bodies, to convincingly demonstrate parity in the quality of peer-reviewed science between men and women. The approach enables high quality conference programs without gender disparity, as well as generating a positive spiral for increased diversity more broadly in STEM.

摘要

缺乏多样性会限制科学的发展。因此,科学界和更广泛的社会都迫切需要采取措施来增加多样性,包括性别多样性。我们开发了一种新颖的数据驱动的会议演讲者选择方法,该方法根据研究人员、招聘委员会和资助机构经常使用的科学影响力指标来识别潜在的演讲者,从而令人信服地证明男性和女性的同行评审科学质量之间存在平等。该方法能够实现高质量的会议项目,而不会出现性别差异,并且为 STEM 领域更广泛的多样性带来积极的螺旋式上升。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验