Massachusetts Institute of Technology, Cambridge, United States.
Harvard University, Cambridge, United States.
Elife. 2019 Aug 1;8:e48932. doi: 10.7554/eLife.48932.
Studying the human subcortical auditory system non-invasively is challenging due to its small, densely packed structures deep within the brain. Additionally, the elaborate three-dimensional (3-D) structure of the system can be difficult to understand based on currently available 2-D schematics and animal models. Wfe addressed these issues using a combination of histological data, post mortem magnetic resonance imaging (MRI), and in vivo MRI at 7 Tesla. We created anatomical atlases based on state-of-the-art human histology (BigBrain) and postmortem MRI (50 µm). We measured functional MRI (fMRI) responses to natural sounds and demonstrate that the functional localization of subcortical structures is reliable within individual participants who were scanned in two different experiments. Further, a group functional atlas derived from the functional data locates these structures with a median distance below 2 mm. Using diffusion MRI tractography, we revealed structural connectivity maps of the human subcortical auditory pathway both in vivo (1050 µm isotropic resolution) and post mortem (200 µm isotropic resolution). This work captures current MRI capabilities for investigating the human subcortical auditory system, describes challenges that remain, and contributes novel, openly available data, atlases, and tools for researching the human auditory system.
由于人类大脑深处的亚皮层听觉系统结构密集且体积较小,因此对其进行非侵入式研究极具挑战性。此外,目前可用的二维示意图和动物模型很难理解该系统复杂的三维结构。我们利用组织学数据、死后磁共振成像(MRI)和 7 特斯拉体内 MRI 相结合的方法解决了这些问题。我们基于最先进的人类组织学(BigBrain)和死后 MRI(50 µm)创建了解剖图谱。我们测量了对自然声音的功能磁共振成像(fMRI)反应,并证明在两个不同实验中扫描的个体参与者中,亚皮层结构的功能定位是可靠的。此外,从功能数据中得出的组功能图谱以低于 2 毫米的中位数距离定位这些结构。我们使用弥散 MRI 示踪技术,在体内(200 µm 各向同性分辨率)和死后(1050 µm 各向同性分辨率)分别揭示了人类亚皮层听觉通路的结构连接图谱。这项工作展示了当前用于研究人类亚皮层听觉系统的 MRI 能力,描述了仍然存在的挑战,并为研究人类听觉系统提供了新颖的、公开可用的数据、图谱和工具。