Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St, Boston, MA 02129, USA.
Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
Cereb Cortex. 2024 Sep 3;34(9). doi: 10.1093/cercor/bhae362.
Accurate labeling of specific layers in the human cerebral cortex is crucial for advancing our understanding of neurodevelopmental and neurodegenerative disorders. Building on recent advancements in ultra-high-resolution ex vivo MRI, we present a novel semi-supervised segmentation model capable of identifying supragranular and infragranular layers in ex vivo MRI with unprecedented precision. On a dataset consisting of 17 whole-hemisphere ex vivo scans at 120 $\mu $m, we propose a Multi-resolution U-Nets framework that integrates global and local structural information, achieving reliable segmentation maps of the entire hemisphere, with Dice scores over 0.8 for supra- and infragranular layers. This enables surface modeling, atlas construction, anomaly detection in disease states, and cross-modality validation while also paving the way for finer layer segmentation. Our approach offers a powerful tool for comprehensive neuroanatomical investigations and holds promise for advancing our mechanistic understanding of progression of neurodegenerative diseases.
准确标注人类大脑皮层的特定层对于深入了解神经发育和神经退行性疾病至关重要。基于超分辨率离体 MRI 的最新进展,我们提出了一种新颖的半监督分割模型,能够以前所未有的精度识别离体 MRI 中的颗粒上层和颗粒下层。在一个由 17 个全半球 120 $\mu $m 离体扫描组成的数据集上,我们提出了一种多分辨率 U-Nets 框架,该框架整合了全局和局部结构信息,能够可靠地分割整个半球的图像,颗粒上层和颗粒下层的 Dice 评分均超过 0.8。这使得能够进行表面建模、图谱构建、疾病状态下的异常检测以及跨模态验证,同时也为更精细的层分割铺平了道路。我们的方法为全面的神经解剖学研究提供了强大的工具,并有望深入了解神经退行性疾病的进展机制。