Suppr超能文献

一种用于推进成体神经系统中胶质细胞介导疗法的研磨微器件。

A Milled Microdevice to Advance Glia-Mediated Therapies in the Adult Nervous System.

作者信息

Peña Juan S, Robles Denise, Zhang Stephanie, Vazquez Maribel

机构信息

Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.

Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA.

出版信息

Micromachines (Basel). 2019 Jul 31;10(8):513. doi: 10.3390/mi10080513.

Abstract

Neurodegenerative disorders affect millions of adults worldwide. Neuroglia have become recent therapeutic targets due to their reparative abilities in the recycling of exogenous neurotoxins and production of endogenous growth factors for proper functioning of the adult nervous system (NS). Since neuroglia respond effectively to stimuli within in vivo environments on the micron scale, adult glial physiology has remarkable synergy with microscale systems. While clinical studies have begun to explore the reparative action of Müller glia (MG) of the visual system and Schwann Cells (ShC) of the peripheral NS after neural insult, few platforms enable the study of intrinsic neuroglia responses to changes in the local microenvironment. This project developed a low-cost, benchtop-friendly microfluidic system called the glia line system, or gLL, to advance the cellular study needed for emerging glial-based therapies. The gLL was fabricated using elastomeric kits coupled with a metal mold milled via conventional computer numerical controlled (CNC) machines. Experiments used the gLL to measure the viability, adhesion, proliferation, and migration of MG and ShC within scales similar to their respective in vivo microenvironments. Results illustrate differences in neuroglia adhesion patterns and chemotactic behavior significant to advances in regenerative medicine using implants and biomaterials, as well as cell transplantation. Data showed highest survival and proliferation of MG and ShC upon laminin and illustrated a four-fold and two-fold increase of MG migration to dosage-dependent signaling from vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF), respectively, as well as a 20-fold increase of ShC migration toward exogenous brain-derived neurotrophic factor (BDNF), compared to media control. The ability to quantify these biological parameters within the gLL offers an effective and reliable alternative to photolithography study neuroglia and their local ranges on the tens to hundreds of microns, using a low-cost and easily fabricated system.

摘要

神经退行性疾病影响着全球数百万成年人。神经胶质细胞因其在外源性神经毒素循环利用中的修复能力以及为成体神经系统(NS)正常运作产生内源性生长因子的能力,近来已成为治疗靶点。由于神经胶质细胞能在微米尺度的体内环境中有效响应刺激,成体神经胶质细胞生理学与微观尺度系统具有显著的协同作用。虽然临床研究已开始探索视觉系统的穆勒胶质细胞(MG)和外周神经系统的施万细胞(ShC)在神经损伤后的修复作用,但很少有平台能够研究神经胶质细胞对局部微环境变化的内在反应。本项目开发了一种低成本、便于在实验台上操作的微流控系统,称为神经胶质细胞系系统(gLL),以推进新兴的基于神经胶质细胞的疗法所需的细胞研究。gLL是使用弹性体套件与通过传统计算机数控(CNC)机器铣削的金属模具制造而成。实验使用gLL在与各自体内微环境相似的尺度内测量MG和ShC的活力、黏附、增殖和迁移。结果表明,神经胶质细胞的黏附模式和趋化行为存在差异,这对于使用植入物和生物材料以及细胞移植的再生医学进展具有重要意义。数据显示,在层粘连蛋白上MG和ShC的存活率和增殖率最高,并且MG分别向血管内皮生长因子(VEGF)和表皮生长因子(EGF)的剂量依赖性信号迁移增加了四倍和两倍,与培养基对照相比,ShC向外源性脑源性神经营养因子(BDNF)的迁移增加了20倍。在gLL内量化这些生物学参数的能力提供了一种有效且可靠的替代方法,可替代光刻技术,用于研究神经胶质细胞及其在数十至数百微米的局部范围,使用的是低成本且易于制造的系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7576/6723365/3b3314208351/micromachines-10-00513-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验