Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1040.
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136.
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16703-16710. doi: 10.1073/pnas.1822092116. Epub 2019 Aug 2.
A vast array of natural phenomena can be understood through the long-established schema of chemical bonding. Conventional chemical bonds arise through local gradients resulting from the rearrangement of electrons; however, it is possible that the hallmark features of chemical bonding could arise through local gradients resulting from nonelectronic forms of mediation. If other forms of mediation give rise to "bonds" that act like conventional ones, recognizing them as bonds could open new forms of supramolecular descriptions of phenomena at the nano- and microscales. Here, we show via a minimal model that crowded hard-particle systems governed solely by entropy exhibit the hallmark features of bonding despite the absence of chemical interactions. We quantitatively characterize these features and compare them to those exhibited by chemical bonds to argue for the existence of entropic bonds. As an example of the utility of the entropic bond classification, we demonstrate the nearly equivalent tradeoff between chemical bonds and entropic bonds in the colloidal crystallization of hard hexagonal nanoplates.
通过长期确立的化学成键模式,可以理解大量的自然现象。传统的化学键是通过电子重新排列产生的局部梯度而产生的;然而,化学键的显著特征也可能是通过来自非电子形式的中介作用产生的局部梯度而产生的。如果其他形式的中介作用产生了类似于传统的“键”,那么将它们识别为键可以为纳米和微观尺度上的现象提供新的超分子描述形式。在这里,我们通过一个最小模型表明,尽管没有化学相互作用,但仅由熵控制的拥挤硬粒子系统表现出了成键的显著特征。我们对这些特征进行了定量描述,并将其与化学键的特征进行了比较,以证明熵键的存在。作为熵键分类的实用性示例,我们展示了硬六边形纳米板胶体结晶中化学键和熵键之间几乎等效的权衡。