Suppr超能文献

眶额皮层脑回模式分型的自动化轨迹评估。

An evaluation of automated tracing for orbitofrontal cortex sulcogyral pattern typing.

机构信息

Geisinger-Bucknell Autism & Developmental Medicine Institute, Lewisburg, PA United States.

Geisinger-Bucknell Autism & Developmental Medicine Institute, Lewisburg, PA United States.

出版信息

J Neurosci Methods. 2019 Oct 1;326:108386. doi: 10.1016/j.jneumeth.2019.108386. Epub 2019 Aug 1.

Abstract

BACKGROUND

Characterization of stereotyped orbitofrontal cortex (OFC) sulcogyral patterns formed by the medial and lateral orbitofrontal sulci (MOS and LOS) can be used to characterize individual variability; however, in practice, issues exist for reliability and reproducibility of anatomical classifications, as current methods rely on manual tracing.

NEW METHOD

We assessed whether an automated tracing procedure would be useful for characterizing OFC sulcogyral patterns. 100 subjects from a published collection of manual OFC tracings and characterizations of patients with bipolar disorder, schizophrenia, and typical controls were used to evaluate an automated tracing procedure implemented using the BrainVISA Morphologist Pipeline.

RESULTS

Automated tracings of caudal and rostral segments of the medial (MOSc/MOSr) and lateral (LOSc/LOSr) orbitofrontal sulci, as well as the intermediate (IOS) and transverse orbitofrontal sulci (TOS) were found to accurately identify OFC sulci, accurately portray sulci continuity, and reliably inform manual sulcogyral pattern characterization.

COMPARISON WITH EXISTING METHOD

Automated tracings produced visibly similar tracings of OFC sulci and removed subjective influence from locating sulci. The semi-automated pipeline of automated tracing and manual sulcogyral pattern characterization can eliminate the need for direct input during the most time-consuming process of the manual pipeline.

CONCLUSIONS

The results suggest that automated OFC sulci tracing methods using BrainVISA Morphologist are feasible and useful in a semi-automated pipeline to characterize OFC sulcogyral patterns. Automated OFC sulci tracing methods will improve reliability and reproducibility of sulcogyral characterizations and can allow for characterizations of sulcal patterns types in larger sample sizes, previously unattainable using traditional manual tracing procedures.

摘要

背景

通过内侧眶额沟(MOS)和外侧眶额沟(LOS)来对刻板的眶额皮质(OFC)脑回模式进行特征描述,可以用来对个体差异进行分类;然而,在实际应用中,目前的解剖学分类方法存在可靠性和可重复性的问题,因为这些方法依赖于手动追踪。

新方法

我们评估了自动化追踪程序是否可用于对 OFC 脑回模式进行特征描述。我们使用了发表的手动 OFC 追踪和双相障碍、精神分裂症和典型对照组患者 OFC 特征描述的集合中的 100 个主体,以评估使用 BrainVISA Morphologist Pipeline 实现的自动化追踪程序。

结果

MOS 尾端和头端(MOSc/MOSr)、LOS 尾端和头端(LOSc/LOSr)、中间(IOS)和横向眶额沟(TOS)的自动追踪,准确地识别了 OFC 沟,准确地描绘了沟的连续性,并可靠地提供了手动脑回模式特征描述的信息。

与现有方法的比较

自动追踪产生的 OFC 沟的轨迹与手动追踪相似,并且消除了定位沟时的主观影响。自动化追踪和手动脑回模式特征描述的半自动化流水线可以消除手动流水线中最耗时过程中直接输入的需要。

结论

结果表明,使用 BrainVISA Morphologist 的自动 OFC 沟追踪方法在半自动流水线中是可行和有用的,可用于对 OFC 脑回模式进行特征描述。自动 OFC 沟追踪方法将提高脑回特征描述的可靠性和可重复性,并允许对以前使用传统手动追踪程序无法获得的更大样本量的脑沟模式类型进行特征描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d92/8050840/3b84477fe8b4/nihms-1537214-f0001.jpg

相似文献

1
An evaluation of automated tracing for orbitofrontal cortex sulcogyral pattern typing.眶额皮层脑回模式分型的自动化轨迹评估。
J Neurosci Methods. 2019 Oct 1;326:108386. doi: 10.1016/j.jneumeth.2019.108386. Epub 2019 Aug 1.
4
Sulcogyral patterns and morphological abnormalities of the orbitofrontal cortex in psychosis.精神病患者的脑回沟模式和眶额皮质形态异常。
Prog Neuropsychopharmacol Biol Psychiatry. 2013 Jul 1;44:168-77. doi: 10.1016/j.pnpbp.2013.02.010. Epub 2013 Feb 26.
6
Orbitofrontal sulcogyral morphology in patients with cocaine use disorder.可卡因使用障碍患者的眶额回沟回形态。
Psychiatry Res Neuroimaging. 2020 Nov 30;305:111174. doi: 10.1016/j.pscychresns.2020.111174. Epub 2020 Sep 2.
9
An examination of orbitofrontal sulcogyral morphology in obsessive-compulsive disorder.强迫症患者眶额回沟回形态的研究。
Psychiatry Res Neuroimaging. 2019 Apr 30;286:18-23. doi: 10.1016/j.pscychresns.2019.02.004. Epub 2019 Feb 22.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验