Suppr超能文献

多选择决策的最优策略。

Optimal policy for multi-alternative decisions.

机构信息

Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland.

Department of Neurobiology, Harvard Medical School, Boston, MA, USA.

出版信息

Nat Neurosci. 2019 Sep;22(9):1503-1511. doi: 10.1038/s41593-019-0453-9. Epub 2019 Aug 5.

Abstract

Everyday decisions frequently require choosing among multiple alternatives. Yet the optimal policy for such decisions is unknown. Here we derive the normative policy for general multi-alternative decisions. This strategy requires evidence accumulation to nonlinear, time-dependent bounds that trigger choices. A geometric symmetry in those boundaries allows the optimal strategy to be implemented by a simple neural circuit involving normalization with fixed decision bounds and an urgency signal. The model captures several key features of the response of decision-making neurons as well as the increase in reaction time as a function of the number of alternatives, known as Hick's law. In addition, we show that in the presence of divisive normalization and internal variability, our model can account for several so-called 'irrational' behaviors, such as the similarity effect as well as the violation of both the independence of irrelevant alternatives principle and the regularity principle.

摘要

日常决策通常需要在多个选项中进行选择。然而,对于这种决策的最佳策略尚不清楚。在这里,我们推导出了一般多选择决策的规范策略。该策略需要将证据积累到非线性、时变的边界,这些边界会触发选择。这些边界中的一个几何对称性允许通过一个简单的神经回路来实现最优策略,该回路涉及使用固定决策边界进行归一化以及一个紧急信号。该模型可以捕捉到决策神经元反应的几个关键特征,以及随着备选方案数量的增加而导致的反应时间增加,这被称为希克定律。此外,我们还表明,在存在可分性归一化和内部可变性的情况下,我们的模型可以解释几种所谓的“非理性”行为,例如相似性效应以及违反无关替代原则和规则原则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验