Suppr超能文献

Ⅲ-Ⅴ族纳米线的合成与应用

Synthesis and Applications of III-V Nanowires.

作者信息

Barrigón Enrique, Heurlin Magnus, Bi Zhaoxia, Monemar Bo, Samuelson Lars

机构信息

Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden.

Sol Voltaics AB , Scheelevägen 63 , 223 63 Lund , Sweden.

出版信息

Chem Rev. 2019 Aug 14;119(15):9170-9220. doi: 10.1021/acs.chemrev.9b00075. Epub 2019 Aug 6.

Abstract

Low-dimensional semiconductor materials structures, where nanowires are needle-like one-dimensional examples, have developed into one of the most intensely studied fields of science and technology. The subarea described in this review is compound semiconductor nanowires, with the materials covered limited to III-V materials (like GaAs, InAs, GaP, InP,...) and III-nitride materials (GaN, InGaN, AlGaN,...). We review the way in which several innovative synthesis methods constitute the basis for the realization of highly controlled nanowires, and we combine this perspective with one of how the different families of nanowires can contribute to applications. One reason for the very intense research in this field is motivated by what they can offer to main-stream semiconductors, by which ultrahigh performing electronic (e.g., transistors) and photonic (e.g., photovoltaics, photodetectors or LEDs) technologies can be merged with silicon and CMOS. Other important aspects, also covered in the review, deals with synthesis methods that can lead to dramatic reduction of cost of fabrication and opportunities for up-scaling to mass production methods.

摘要

低维半导体材料结构,其中纳米线是针状的一维示例,已发展成为科技领域中研究最为深入的领域之一。本综述所描述的子领域是化合物半导体纳米线,涵盖的材料仅限于III-V族材料(如砷化镓、砷化铟、磷化镓、磷化铟等)和III族氮化物材料(氮化镓、铟镓氮、铝镓氮等)。我们回顾了几种创新合成方法如何构成实现高度可控纳米线的基础,并将这一观点与纳米线的不同家族如何促进应用的观点相结合。该领域研究非常活跃的一个原因是它们能为主流半导体提供支持,借此可将超高性能电子技术(如晶体管)和光子技术(如光伏、光电探测器或发光二极管)与硅和互补金属氧化物半导体(CMOS)相结合。综述中还涉及的其他重要方面包括能够大幅降低制造成本的合成方法以及扩大规模至大规模生产方法的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验