Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan.
Sensors (Basel). 2020 Dec 23;21(1):41. doi: 10.3390/s21010041.
One of the biggest challenges of activity data collection is the need to rely on users and keep them engaged to continually provide labels. Recent breakthroughs in mobile platforms have proven effective in bringing deep neural networks powered intelligence into mobile devices. This study proposes a novel on-device personalization for data labeling for an activity recognition system using mobile sensing. The key idea behind this system is that estimated activities personalized for a specific individual user can be used as feedback to motivate user contribution and improve data labeling quality. First, we exploited fine-tuning using a Deep Recurrent Neural Network to address the lack of sufficient training data and minimize the need for training deep learning on mobile devices from scratch. Second, we utilized a model pruning technique to reduce the computation cost of on-device personalization without affecting the accuracy. Finally, we built a robust activity data labeling system by integrating the two techniques outlined above, allowing the mobile application to create a personalized experience for the user. To demonstrate the proposed model's capability and feasibility, we developed and deployed the proposed system to realistic settings. For our experimental setup, we gathered more than 16,800 activity windows from 12 activity classes using smartphone sensors. We empirically evaluated the proposed quality by comparing it with a baseline using machine learning. Our results indicate that the proposed system effectively improved activity accuracy recognition for individual users and reduced cost and latency for inference for mobile devices. Based on our findings, we highlight critical and promising future research directions regarding the design of efficient activity data collection with on-device personalization.
活动数据收集的最大挑战之一是需要依赖用户并保持他们的参与度,以持续提供标签。最近移动平台的突破已证明在将基于深度神经网络的智能引入移动设备方面非常有效。本研究提出了一种使用移动感测的活动识别系统的新颖的设备内个性化数据标记方法。该系统背后的关键思想是,可以将针对特定用户的估计活动用作反馈,以激励用户的贡献并提高数据标记的质量。首先,我们利用深度递归神经网络的微调来解决训练数据不足的问题,并最大程度地减少在移动设备上从头开始训练深度学习的需求。其次,我们利用模型剪枝技术来降低设备内个性化的计算成本,而不会影响准确性。最后,我们通过整合上述两种技术构建了一个强大的活动数据标记系统,使移动应用程序能够为用户创造个性化的体验。为了展示所提出模型的能力和可行性,我们在实际环境中开发并部署了所提出的系统。对于我们的实验设置,我们使用智能手机传感器从 12 个活动类别中收集了超过 16800 个活动窗口。我们通过使用机器学习与基线进行比较,从经验上评估了所提出的质量。我们的结果表明,所提出的系统有效地提高了单个用户的活动准确性识别,并降低了移动设备的推断成本和延迟。基于我们的发现,我们强调了在设备内个性化设计方面进行高效活动数据收集的关键和有前途的未来研究方向。