Suppr超能文献

自适应积分点火模型再现了飞蛾嗅觉受体神经元反应的动力学。

Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in a moth.

机构信息

Department of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.

Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, 78000 Versailles, France.

出版信息

J R Soc Interface. 2019 Aug 30;16(157):20190246. doi: 10.1098/rsif.2019.0246. Epub 2019 Aug 7.

Abstract

In order to understand how olfactory stimuli are encoded and processed in the brain, it is important to build a computational model for olfactory receptor neurons (ORNs). Here, we present a simple and reliable mathematical model of a moth ORN generating spikes. The model incorporates a simplified description of the chemical kinetics leading to olfactory receptor activation and action potential generation. We show that an adaptive spike threshold regulated by prior spike history is an effective mechanism for reproducing the typical phasic-tonic time course of ORN responses. Our model reproduces the response dynamics of individual neurons to a fluctuating stimulus that approximates odorant fluctuations in nature. The parameters of the spike threshold are essential for reproducing the response heterogeneity in ORNs. The model provides a valuable tool for efficient simulations of olfactory circuits.

摘要

为了理解嗅觉刺激在大脑中的编码和处理方式,构建用于嗅觉受体神经元(ORN)的计算模型非常重要。在这里,我们提出了一种简单而可靠的飞蛾 ORN 产生尖峰的数学模型。该模型包含对导致嗅觉受体激活和动作电位产生的化学动力学的简化描述。我们表明,由先前尖峰历史调节的自适应尖峰阈值是再现 ORN 反应典型的相位-紧张时间过程的有效机制。我们的模型再现了单个神经元对模拟自然界中气味波动的波动刺激的反应动力学。尖峰阈值的参数对于再现 ORN 中的反应异质性至关重要。该模型为嗅觉回路的高效模拟提供了有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d90/6731495/a7d8b19f3ed5/rsif20190246-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验