Su Chang-Chao, Chou Chu-Kuang, Mukundan Arvind, Karmakar Riya, Sanbatcha Binusha Fathima, Huang Chien-Wei, Weng Wei-Chun, Wang Hsiang-Chen
Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 60002, Taiwan.
Obesity Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 60002, Taiwan.
Bioengineering (Basel). 2025 Jun 4;12(6):613. doi: 10.3390/bioengineering12060613.
Capsule endoscopy (CE) has revolutionized gastrointestinal (GI) diagnostics by providing a non-invasive, patient-centered approach to observing the digestive tract. Conceived in 2000 by Gavriel Iddan, CE employs a diminutive, ingestible capsule containing a high-resolution camera, LED lighting, and a power supply. It specializes in visualizing the small intestine, a region frequently unreachable by conventional endoscopy. CE helps detect and monitor disorders, such as unexplained gastrointestinal bleeding, Crohn's disease, and cancer, while presenting a lower procedural risk than conventional endoscopy. Contrary to conventional techniques that necessitate anesthesia, CE reduces patient discomfort and complications. Nonetheless, its constraints, specifically the incapacity to conduct biopsies or therapeutic procedures, have spurred technical advancements. Five primary types of capsule endoscopes have emerged: steerable, magnetic, robotic, tethered, and hybrid. Their performance varies substantially. For example, the image sizes vary from 256 × 256 to 640 × 480 pixels, the fields of view (FOV) range from 140° to 360°, the battery life is between 8 and 15 h, and the frame rates fluctuate from 2 to 35 frames per second, contingent upon motion-adaptive capture. This study addresses a significant gap by methodically evaluating CE platforms, outlining their clinical preparedness, and examining the underexploited potential of artificial intelligence in improving diagnostic precision. Through the examination of technical requirements and clinical integration, we highlight the progress made in overcoming existing CE constraints and outline prospective developments for next-generation GI diagnostics.
胶囊内镜(CE)通过提供一种非侵入性的、以患者为中心的方法来观察消化道,彻底改变了胃肠道(GI)诊断。2000年由加夫列尔·伊丹构思,CE采用了一种小巧的、可吞咽的胶囊,其中包含一个高分辨率摄像头、LED照明和电源。它专门用于可视化小肠,这是传统内镜检查经常无法到达的区域。CE有助于检测和监测疾病,如不明原因的胃肠道出血、克罗恩病和癌症,同时与传统内镜检查相比,其操作风险更低。与需要麻醉的传统技术相反,CE减少了患者的不适和并发症。尽管如此,其局限性,特别是无法进行活检或治疗程序,推动了技术进步。已经出现了五种主要类型的胶囊内镜:可转向的、磁性的、机器人的、系留的和混合的。它们的性能差异很大。例如,图像尺寸从256×256像素到640×480像素不等,视野(FOV)范围从140°到360°,电池续航时间在8到15小时之间,帧率根据运动自适应捕获从每秒2帧到35帧波动。本研究通过系统评估CE平台、概述其临床准备情况以及研究人工智能在提高诊断精度方面未被充分利用的潜力,填补了一个重大空白。通过检查技术要求和临床整合,我们强调了在克服现有CE限制方面取得的进展,并概述了下一代GI诊断的未来发展。