Suppr超能文献

利用机器学习分类器开发牙周病抗体阵列,以预测严重牙周病。

Developing a periodontal disease antibody array for the prediction of severe periodontal disease using machine learning classifiers.

机构信息

RayBiotech, Guangzhou, Guangzhou, Guangdong, P. R. China.

Department of Stomatology, The Affiliated Third Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.

出版信息

J Periodontol. 2020 Feb;91(2):232-243. doi: 10.1002/JPER.19-0173. Epub 2019 Aug 25.

Abstract

BACKGROUND

The aim of this study was to simultaneously and quantitatively assess the expression levels of 20 periodontal disease-related proteins in gingival crevicular fluid (GCF) from normal controls (NOR) and severe periodontitis (SP) patients with an antibody array.

METHODS

Antibodies against 20 periodontal disease-related proteins were spotted onto a glass slide to create a periodontal disease antibody array (PDD). The array was then incubated with GCF samples collected from 25 NOR and 25 SP patients. Differentially expressed proteins between NOR and SP patients were then used to build receiver operator characteristic (ROC) curves and compare five classification models, including support vector machine, random forest, k nearest neighbor, linear discriminant analysis, and Classification and Regression Trees.

RESULTS

Seven proteins (C-reactive protein, interleukin [IL]-1α, interleukin-1β, interleukin-8, matrix metalloproteinase-13, osteoprotegerin, and osteoactivin) were significantly upregulated in SP patients compared with NOR, while receptor activator of nuclear factor-kappa was significantly downregulated. The highest diagnostic accuracy using a ROC curve was observed for IL-1β with an area under the curve of 0.984. Five of the proteins (IL-1β, IL-8, MMP-13, osteoprotegerin, and osteoactivin) were identified as important features for classification. Linear discriminant analysis had the highest classification accuracy across the five classification models that were tested.

CONCLUSION

This study highlights the potential of antibody arrays to diagnose periodontal disease.

摘要

背景

本研究旨在通过抗体阵列同时定量评估正常对照组(NOR)和严重牙周炎(SP)患者龈沟液(GCF)中 20 种牙周病相关蛋白的表达水平。

方法

将针对 20 种牙周病相关蛋白的抗体点样到载玻片上,制作牙周病抗体阵列(PDD)。然后将阵列与从 25 名 NOR 和 25 名 SP 患者中收集的 GCF 样本孵育。然后使用 NOR 和 SP 患者之间差异表达的蛋白质来构建接收器操作特性(ROC)曲线,并比较五种分类模型,包括支持向量机、随机森林、k 最近邻、线性判别分析和分类回归树。

结果

与 NOR 相比,SP 患者中有 7 种蛋白(C 反应蛋白、白细胞介素[IL]-1α、白细胞介素-1β、白细胞介素-8、基质金属蛋白酶-13、骨保护素和骨激活素)显著上调,而核因子-κB 受体激活物则显著下调。ROC 曲线显示 IL-1β 的诊断准确性最高,曲线下面积为 0.984。五种蛋白(IL-1β、IL-8、MMP-13、骨保护素和骨激活素)被确定为分类的重要特征。线性判别分析在测试的五种分类模型中具有最高的分类准确性。

结论

本研究强调了抗体阵列在诊断牙周病方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验