Suppr超能文献

阿尔茨海默病 AT(N)生物标志物谱的频率和纵向临床结局:一项纵向研究。

Frequency and longitudinal clinical outcomes of Alzheimer's AT(N) biomarker profiles: A longitudinal study.

机构信息

Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.

出版信息

Alzheimers Dement. 2019 Sep;15(9):1208-1217. doi: 10.1016/j.jalz.2019.05.006. Epub 2019 Aug 6.

Abstract

INTRODUCTION

We aimed to estimate the frequency of each AT(N) (β-amyloid deposition [A], pathologic tau [T], and neurodegeneration [N]) profile in different clinical diagnosis groups and to describe the longitudinal change in clinical outcomes of individuals in each group.

METHODS

Longitudinal change in clinical outcomes and conversion risk of AT(N) profiles are assessed using linear mixed-effects models and multivariate Cox proportional-hazard models, respectively.

RESULTS

Participants with A+T+N+ showed faster clinical progression than those with A-T-N- and A+T±N-. Compared with A-T-N-, participants with A+T+N± had an increased risk of conversion from cognitively normal (CN) to incident prodromal stage of Alzheimer's disease (AD), and from MCI to AD dementia. A+T+N+ showed an increased conversion risk when compared with A+T±N-.

DISCUSSION

The 2018 research framework may provide prognostic information of clinical change and progression. It may also be useful for targeted recruitment of participants with AD into clinical trials.

摘要

简介

我们旨在评估不同临床诊断组中每种 AT(N)(β-淀粉样蛋白沉积[A]、病理性tau[T]和神经退行性变[N])图谱的频率,并描述每个组中个体的临床结局的纵向变化。

方法

使用线性混合效应模型评估 AT(N)图谱的临床结局纵向变化和转换风险,使用多变量 Cox 比例风险模型分别评估转换风险。

结果

A+T+N+ 组的临床进展速度快于 A-T-N-组和 A+T±N-组。与 A-T-N-组相比,A+T+N±组从认知正常(CN)到阿尔茨海默病(AD)前驱期的发生率更高,从 MCI 到 AD 痴呆的转化率也更高。与 A+T±N-组相比,A+T+N+组的转化率更高。

讨论

2018 年的研究框架可以提供临床变化和进展的预后信息。它也可能有助于有针对性地招募 AD 患者参加临床试验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验