Suppr超能文献

神经网络分类心脏病从 P 心血管磁共振波谱测量肌酸激酶能量代谢。

Neural-network classification of cardiac disease from P cardiovascular magnetic resonance spectroscopy measures of creatine kinase energy metabolism.

机构信息

Division of MR Research, Department of Radiology, Johns Hopkins School of Medicine, Park Bldg. 310, 600 N Wolfe St, Baltimore, MD, 21287, USA.

Division of Cardiology, Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.

出版信息

J Cardiovasc Magn Reson. 2019 Aug 12;21(1):49. doi: 10.1186/s12968-019-0560-5.

Abstract

BACKGROUND

The heart's energy demand per gram of tissue is the body's highest and creatine kinase (CK) metabolism, its primary energy reserve, is compromised in common heart diseases. Here, neural-network analysis is used to test whether noninvasive phosphorus (P) cardiovascular magnetic resonance spectroscopy (CMRS) measurements of cardiac adenosine triphosphate (ATP) energy, phosphocreatine (PCr), the first-order CK reaction rate k, and the rate of ATP synthesis through CK (CK flux), can predict specific human heart disease and clinical severity.

METHODS

The data comprised the extant 178 complete sets of PCr and ATP concentrations, k, and CK flux data from human CMRS studies performed on clinical 1.5 and 3 Tesla scanners. Healthy subjects and patients with nonischemic cardiomyopathy, dilated (DCM) or hypertrophic disease, New York Heart Association (NYHA) class I-IV heart failure (HF), or with anterior myocardial infarction are included. Three-layer neural-networks were created to classify disease and to differentiate DCM, hypertrophy and clinical NYHA class in HF patients using leave-one-out training. Network performance was assessed using 'confusion matrices' and 'area-under-the-curve' (AUC) analyses of 'receiver operating curves'. Possible methodological bias and network imbalance were tested by segregating 1.5 and 3 Tesla data, and by data augmentation by random interpolation of nearest neighbors, respectively.

RESULTS

The network differentiated healthy, HF and non-HF cardiac disease with an overall accuracy of 84% and AUC > 90% for each category using the four CK metabolic parameters, alone. HF patients with DCM, hypertrophy, and different NYHA severity were differentiated with ~ 80% overall accuracy independent of CMRS methodology.

CONCLUSIONS

While sample-size was limited in some sub-classes, a neural network classifier applied to noninvasive cardiac P CMRS data, could serve as a metabolic biomarker for common disease types and HF severity with clinically-relevant accuracy. Moreover, the network's ability to individually classify disease and HF severity using CK metabolism alone, implies an intimate relationship between CK metabolism and disease, with subtle underlying phenotypic differences that enable their differentiation.

TRIAL REGISTRATION

ClinicalTrials.gov Identifier: NCT00181259.

摘要

背景

心脏组织的能量需求为每克组织中最高,而肌酸激酶(CK)代谢是其主要的能量储备,在常见的心脏疾病中受到损害。在这里,神经网络分析被用于测试非侵入性磷(P)心血管磁共振波谱(CMRS)测量心脏三磷酸腺苷(ATP)能量、磷酸肌酸(PCr)、CK 反应的一级速率常数 k 和 CK 通量(CK 流)是否可以预测特定的人类心脏疾病和临床严重程度。

方法

数据包括从临床 1.5 和 3 Tesla 扫描仪上进行的人类 CMRS 研究中现有的 178 套完整的 PCr 和 ATP 浓度、k 和 CK 通量数据。包括健康受试者和非缺血性心肌病、扩张型(DCM)或肥厚型疾病、纽约心脏协会(NYHA)I-IV 级心力衰竭(HF)或前壁心肌梗死的患者。使用“留一法”训练创建了三层神经网络,以对疾病进行分类,并对 HF 患者中的 DCM、肥大和临床 NYHA 分级进行区分。使用“混淆矩阵”和“接收者操作曲线”的“曲线下面积”(AUC)分析评估网络性能。通过分别分离 1.5 和 3 Tesla 数据以及通过随机插入最近邻进行数据扩充来测试可能的方法学偏差和网络不平衡。

结果

该网络使用四个 CK 代谢参数单独区分健康、HF 和非 HF 心脏疾病,总体准确率为 84%,每个类别 AUC 值均大于 90%。使用四个 CK 代谢参数单独区分具有不同 NYHA 严重程度的 DCM、肥大和 HF 患者的总准确率约为 80%,与 CMRS 方法无关。

结论

尽管某些亚类别的样本量有限,但应用于非侵入性心脏 P CMRS 数据的神经网络分类器可以作为常见疾病类型和 HF 严重程度的代谢生物标志物,具有临床相关的准确性。此外,网络仅使用 CK 代谢即可单独对疾病和 HF 严重程度进行分类的能力,意味着 CK 代谢与疾病之间存在密切关系,存在细微的潜在表型差异,使其能够得到区分。

试验注册

ClinicalTrials.gov 标识符:NCT00181259。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97d1/6689869/8a5ec4130ed5/12968_2019_560_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验