Suppr超能文献

仿生超材料:多频段电磁波适应性和疏水性特点。

Bioinspired Metamaterials: Multibands Electromagnetic Wave Adaptability and Hydrophobic Characteristics.

机构信息

Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116085, P. R. China.

Beijing Aeronautical Manufacturing Technology Research Institute, Beijing, 100024, P. R. China.

出版信息

Small. 2019 Oct;15(40):e1902730. doi: 10.1002/smll.201902730. Epub 2019 Aug 12.

Abstract

Although various photonic devices inspired by natural materials have been developed, there is no research focusing on multibands adaptability, which is not conducive to the advancement of materials science. Herein, inspired by the moth eye surface model, state-of-the-art hierarchical metamaterials (MMs) used as tunable devices in multispectral electromagnetic-waves (EMWs) frequency range, from microwave to ultraviolet (UV), are designed and prepared. Experimentally, the robust broad bandwidth of microwave absorption greater than 90% (reflection loss (RL) < -10 dB) covering almost entire X and Ku bands (8.04-17.88 GHz) under a deep sub-wavelength thickness (1 mm) is demonstrated. The infrared emissivity is reduced and does not affect the microwave absorption simultaneously, further realizing anti-reflection and camouflage via the strong visible light scattering by the microstructure, and can prevent degradation by reducing the transmittance to less than 10% over the whole near UV band, as well as having hydrophobic abilities. The mechanism explored via simulation model is that topological effects are found in the bio-structure. This discovery points to a pathway for using natural models to overcome physical limits of MMs and has promising prospect in novel photonic materials.

摘要

虽然已经开发出了许多受自然材料启发的光子器件,但目前还没有研究集中在多波段适应性上,这不利于材料科学的发展。在此,受 moth eye 表面模型的启发,设计并制备了先进的分层超材料 (MMs),作为可调谐多光谱电磁 (EMW) 波频率范围内的器件,从微波到紫外线 (UV)。实验上,在深亚波长厚度 (1mm) 下,演示了超过 90%的微波吸收宽带宽 (> -10dB 的反射损耗 (RL)),覆盖了几乎整个 X 和 Ku 波段 (8.04-17.88GHz)。同时,红外发射率降低而不影响微波吸收,通过微结构的强可见光散射进一步实现抗反射和伪装,并且可以通过降低整个近紫外波段的透过率至小于 10%来防止降解,同时还具有疏水性。通过模拟模型探索的机制是在生物结构中发现了拓扑效应。这一发现为利用自然模型克服 MMs 的物理限制指明了一条途径,并在新型光子材料中有广阔的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验