Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India.
J Phys Chem A. 2019 Sep 5;123(35):7550-7557. doi: 10.1021/acs.jpca.9b04100. Epub 2019 Aug 22.
Near-infrared (NIR) light harvesting has enormous importance for different potential applications in the modern era of research. Some NIR cyanine dyes such as IR820 have achieved great success in energy harvesting and cancer therapy. However, their action is limited for low photostability, considerable thermal degradation, short circulation times, and nonspecific biodistribution. Our present study is an attempt to overcome such limitations by attaching a model cyanine dye IR820 with ZnO nanoparticles. We prepared an IR820-ZnO nanohybrid and characterized it using microscopic and optical spectroscopic tools. Thermogravimetric analysis depicted greater thermal stability of the IR820-ZnO nanohybrid compared to free dye. We explored the enhancement in the photostability of IR820 upon nanohybrid formation. We detected generation of photoinduced reactive oxygen species (ROS) such as superoxide, singlet oxygen, and so forth using appropriate molecular probes. The formation of IR820-ZnO nanohybrid reduced production of photoinduced singlet oxygen. However, it revealed an alternative trend in overall ROS formation (increases total ROS) under red light illumination. To correlate the enhanced photostability of IR820 on the ZnO surface, we explored excited-state dynamical processes at the interface in nanohybrids. We illustrated the photoinduced excited-state electron-transfer process from the lowest unoccupied molecular orbital of IR820 to the conduction band of ZnO. This photoelectron-transfer process enhances the production of ROS and decreases the formation of singlet oxygen that altogether leads to improvement in photostability and overall activity. A quencher of singlet oxygen sodium azide (NaN) was used to further confirm the direct association of singlet oxygen generation with the photostability issue of IR820. Also, ZnO is able to deliver the dye selectively in acidic environment, which suggests its diseased site-specific targeted activity. Our results provide promising improvement for potential use of IR820 through formation of a nanohybrid that could be translated for other NIR cyanine dyes.
近红外(NIR)光捕获在现代研究时代对于不同的潜在应用具有重要意义。一些 NIR 菁染料,如 IR820,在能量收集和癌症治疗方面取得了巨大成功。然而,它们的作用受到低光稳定性、较大的热降解、短循环时间和非特异性生物分布的限制。我们目前的研究试图通过将模型菁染料 IR820 与 ZnO 纳米粒子结合来克服这些限制。我们制备了 IR820-ZnO 纳米杂化物,并使用显微镜和光学光谱工具对其进行了表征。热重分析表明,与游离染料相比,IR820-ZnO 纳米杂化物具有更高的热稳定性。我们探索了形成纳米杂化物后 IR820 光稳定性的增强。我们使用适当的分子探针检测到超氧化物、单线态氧等光致活性氧物质(ROS)的生成。IR820-ZnO 纳米杂化物的形成减少了光致单线态氧的生成。然而,在红光照射下,它显示出总 ROS 形成的替代趋势(增加总 ROS)。为了关联 IR820 在 ZnO 表面增强的光稳定性,我们在纳米杂化物中探索了界面上的激发态动力学过程。我们说明了从 IR820 的最低未占据分子轨道到 ZnO 的导带的光致激发态电子转移过程。这种光电子转移过程增强了 ROS 的产生,并减少了单线态氧的形成,这两者共同导致了光稳定性和整体活性的提高。单线态氧的淬灭剂叠氮化钠(NaN)被用于进一步证实单线态氧生成与 IR820 的光稳定性问题的直接关联。此外,ZnO 能够在酸性环境中选择性地输送染料,这表明其具有疾病部位特异性靶向活性。我们的结果为通过形成纳米杂化物来提高 IR820 的潜在用途提供了有希望的改进,这可能会转化为其他 NIR 菁染料的应用。