Suppr超能文献

肺组织的拉曼光谱成像:非肿瘤组织与癌组织的无标记分子特征分析

Raman spectroscopy mapping of lung tissue: label-free molecular characterization of nontumorous and cancerous tissues.

作者信息

Bourbousson Manon, Soomro Irshad, Baldwin David, Notingher Ioan

机构信息

University of Nottingham, School of Physics and Astronomy, Nottingham, United Kingdom.

Nottingham University Hospitals NHS Trust, Histopathology Department, Nottingham, United Kingdom.

出版信息

J Med Imaging (Bellingham). 2019 Jul;6(3):036001. doi: 10.1117/1.JMI.6.3.036001. Epub 2019 Aug 9.

Abstract

Raman spectroscopy mapping was used to study fresh lung tissues and compare to histology sections. The Raman mapping measurements revealed differences in the molecular composition of normal lung tissue, adenocarcinoma, and squamous cell carcinoma (SCC). Molecular heterogeneity of the tissue samples was well captured by the -means clustering analysis of the Raman datasets, as confirmed by the correlation with the adjacent haematoxylin and eosin (H&E) stained tissue sections. The results indicate that the fluorescence background varies considerably even in samples that appear structurally uniform in the H&E images, both for normal and tumor tissue. The results show that characteristic Raman bands can be used to discriminate between tumorous and nontumorous lung tissues and between adenocarcinoma and SCC tissues. These results indicate the potential to develop Raman classifications models for lung tissues based on the Raman spectral differences at the microscopic level, which can be used for tissue diagnosis or treatment stratification.

摘要

拉曼光谱成像技术被用于研究新鲜肺组织,并与组织学切片进行比较。拉曼成像测量揭示了正常肺组织、腺癌和鳞状细胞癌(SCC)在分子组成上的差异。通过对拉曼数据集进行K均值聚类分析,很好地捕捉到了组织样本的分子异质性,这一点通过与相邻苏木精和伊红(H&E)染色组织切片的相关性得到了证实。结果表明,即使在H&E图像中结构上看起来均匀的样本中,无论是正常组织还是肿瘤组织,荧光背景都有很大差异。结果显示,特征拉曼谱带可用于区分肿瘤性和非肿瘤性肺组织,以及腺癌和SCC组织。这些结果表明,基于微观层面的拉曼光谱差异开发肺组织拉曼分类模型具有潜力,可用于组织诊断或治疗分层。

相似文献

1
Raman spectroscopy mapping of lung tissue: label-free molecular characterization of nontumorous and cancerous tissues.
J Med Imaging (Bellingham). 2019 Jul;6(3):036001. doi: 10.1117/1.JMI.6.3.036001. Epub 2019 Aug 9.
4
Accurate identification of breast cancer margins in microenvironments of ex-vivo basal and luminal breast cancer tissues using Raman spectroscopy.
Prostaglandins Other Lipid Mediat. 2020 Dec;151:106475. doi: 10.1016/j.prostaglandins.2020.106475. Epub 2020 Jul 22.
5
Raman spectroscopic discrimination of normal and cancerous lung tissues.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Aug 5;219:257-266. doi: 10.1016/j.saa.2019.04.055. Epub 2019 Apr 22.
7
Near-infrared Raman spectroscopy for optical diagnosis of lung cancer.
Int J Cancer. 2003 Dec 20;107(6):1047-52. doi: 10.1002/ijc.11500.
8

引用本文的文献

1
Ex-vivo Raman spectroscopy and AI-based classification of soft tissue sarcomas.
PLoS One. 2025 Sep 2;20(9):e0330618. doi: 10.1371/journal.pone.0330618. eCollection 2025.
2
Utility of Raman Spectroscopy in Pulmonary Medicine.
Adv Respir Med. 2024 Oct 18;92(5):421-428. doi: 10.3390/arm92050038.
3
The application of Raman spectroscopy for the diagnosis and monitoring of lung tumors.
Front Bioeng Biotechnol. 2024 Apr 18;12:1385552. doi: 10.3389/fbioe.2024.1385552. eCollection 2024.
5
Deep Learning for Chondrogenic Tumor Classification through Wavelet Transform of Raman Spectra.
Sensors (Basel). 2022 Oct 3;22(19):7492. doi: 10.3390/s22197492.
6
Imaging of Oral SCC Cells by Raman Micro-Spectroscopy Technique.
Molecules. 2021 Jun 15;26(12):3640. doi: 10.3390/molecules26123640.
7
Recent advances in surface-enhanced Raman spectroscopy based liquid biopsy for colorectal cancer (Review).
Exp Ther Med. 2020 Dec;20(6):213. doi: 10.3892/etm.2020.9342. Epub 2020 Oct 14.

本文引用的文献

1
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
2
Development and in vivo test of a miniature Raman probe for early cancer detection in the peripheral lung.
J Biophotonics. 2018 Nov;11(11):e201800055. doi: 10.1002/jbio.201800055. Epub 2018 Aug 30.
3
Intra-operative spectroscopic assessment of surgical margins during breast conserving surgery.
Breast Cancer Res. 2018 Jul 9;20(1):69. doi: 10.1186/s13058-018-1002-2.
4
Label-Free Raman Spectroscopy Detects Stromal Adaptations in Premetastatic Lungs Primed by Breast Cancer.
Cancer Res. 2017 Jan 15;77(2):247-256. doi: 10.1158/0008-5472.CAN-16-1862. Epub 2016 Nov 15.
5
Water Concentration Analysis by Raman Spectroscopy to Determine the Location of the Tumor Border in Oral Cancer Surgery.
Cancer Res. 2016 Oct 15;76(20):5945-5953. doi: 10.1158/0008-5472.CAN-16-1227. Epub 2016 Aug 16.
6
Real-time endoscopic Raman spectroscopy for in vivo early lung cancer detection.
J Biophotonics. 2017 Jan;10(1):98-110. doi: 10.1002/jbio.201500204. Epub 2016 Jan 8.
7
Is England closing the international gap in cancer survival?
Br J Cancer. 2015 Sep 1;113(5):848-60. doi: 10.1038/bjc.2015.265. Epub 2015 Aug 4.
8
Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis.
Eur J Histochem. 2014 Dec 12;58(4):2461. doi: 10.4081/ejh.2014.2461.
10
Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15189-94. doi: 10.1073/pnas.1311289110. Epub 2013 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验