Suppr超能文献

开发和验证用于 CKD 的实用电子表型。

Development and Validation of a Pragmatic Electronic Phenotype for CKD.

机构信息

National Kidney Disease Education Program, Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.

Value Institute, Christiana Care Health System, Newark, Delaware.

出版信息

Clin J Am Soc Nephrol. 2019 Sep 6;14(9):1306-1314. doi: 10.2215/CJN.00360119. Epub 2019 Aug 12.

Abstract

BACKGROUND AND OBJECTIVES

Poor identification of individuals with CKD is a major barrier to research and appropriate clinical management of the disease. We aimed to develop and validate a pragmatic electronic (e-) phenotype to identify patients likely to have CKD.

DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: The e-phenotype was developed by an expert working group and implemented among adults receiving in- or outpatient care at five healthcare organizations. To determine urine albumin (UA) dipstick cutoffs for CKD to enable use in the e-phenotype when lacking urine albumin-to-creatinine ratio (UACR), we compared same day UACR and UA results at four sites. A sample of patients, spanning no CKD to ESKD, was randomly selected at four sites for validation via blinded chart review.

RESULTS

The CKD e-phenotype was defined as most recent eGFR <60 ml/min per 1.73 m with at least one value <60 ml/min per 1.73 m >90 days prior and/or a UACR of ≥30 mg/g in the most recent test with at least one positive value >90 days prior. Dialysis and transplant were identified using diagnosis codes. In absence of UACR, a sensitive CKD definition would consider negative UA results as normal to mildly increased (KDIGO A1), trace to 1+ as moderately increased (KDIGO A2), and ≥2+ as severely increased (KDIGO A3). Sensitivity, specificity, and diagnostic accuracy of the CKD e-phenotype were 99%, 99%, and 98%, respectively. For dialysis sensitivity was 94% and specificity was 89%. For transplant, sensitivity was 97% and specificity was 91%.

CONCLUSIONS

The CKD e-phenotype provides a pragmatic and accurate method for EHR-based identification of patients likely to have CKD.

摘要

背景与目的

慢性肾脏病(CKD)患者的识别率低是阻碍开展相关研究和实施合理临床管理的主要障碍。本研究旨在开发并验证一种实用的电子(e-)表型,以识别可能患有 CKD 的患者。

设计、地点、参与者和测量方法:e-表型由一个专家工作组开发,并在五个医疗保健机构接受门诊或住院治疗的成年人中实施。为了确定尿白蛋白(UA)干化学试带检测用于识别 CKD 的截断值,当缺乏尿白蛋白/肌酐比值(UACR)时,我们比较了四个地点同日的 UACR 和 UA 结果。四个地点随机抽取涵盖无 CKD 至终末期肾病(ESKD)的患者样本,通过盲法病历审核进行验证。

结果

CKD e-表型的定义为:最近的肾小球滤过率(eGFR)<60 ml/min/1.73 m2,且至少有一次 eGFR<60 ml/min/1.73 m2 的时间>90 天,或最近一次检测的 UACR≥30 mg/g,且至少有一次 UACR 值>90 天。透析和移植是通过诊断代码来识别的。在缺乏 UACR 的情况下,一个敏感的 CKD 定义将把阴性 UA 结果视为正常至轻度升高(KDIGO A1)、微量至 1+为中度升高(KDIGO A2)、≥2+为重度升高(KDIGO A3)。CKD e-表型的敏感性、特异性和诊断准确性分别为 99%、99%和 98%。对于透析,敏感性为 94%,特异性为 89%。对于移植,敏感性为 97%,特异性为 91%。

结论

CKD e-表型为基于电子病历的识别 CKD 患者提供了一种实用且准确的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a502/6730512/9c815ea90e64/CJN.00360119absf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验