Suppr超能文献

树突棘中第二信使动力学的几何原理。

Geometric principles of second messenger dynamics in dendritic spines.

机构信息

Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 92093-0411, CA, United States.

Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.

出版信息

Sci Rep. 2019 Aug 12;9(1):11676. doi: 10.1038/s41598-019-48028-0.

Abstract

Dendritic spines are small, bulbous protrusions along dendrites in neurons and play a critical role in synaptic transmission. Dendritic spines come in a variety of shapes that depend on their developmental state. Additionally, roughly 14-19% of mature spines have a specialized endoplasmic reticulum called the spine apparatus. How does the shape of a postsynaptic spine and its internal organization affect the spatio-temporal dynamics of short timescale signaling? Answers to this question are central to our understanding the initiation of synaptic transmission, learning, and memory formation. In this work, we investigated the effect of spine and spine apparatus size and shape on the spatio-temporal dynamics of second messengers using mathematical modeling using reaction-diffusion equations in idealized geometries (ellipsoids, spheres, and mushroom-shaped). Our analyses and simulations showed that in the short timescale, spine size and shape coupled with the spine apparatus geometries govern the spatiotemporal dynamics of second messengers. We show that the curvature of the geometries gives rise to pseudo-harmonic functions, which predict the locations of maximum and minimum concentrations along the spine head. Furthermore, we showed that the lifetime of the concentration gradient can be fine-tuned by localization of fluxes on the spine head and varying the relative curvatures and distances between the spine apparatus and the spine head. Thus, we have identified several key geometric determinants of how the spine head and spine apparatus may regulate the short timescale chemical dynamics of small molecules that control synaptic plasticity.

摘要

树突棘是神经元树突上的小球状突起,在突触传递中起着关键作用。树突棘有多种形状,取决于其发育状态。此外,大约 14-19%的成熟棘突具有一种称为棘突器的特殊内质网。突触后棘突的形状及其内部结构如何影响短时间尺度信号的时空动力学?回答这个问题对于我们理解突触传递的启动、学习和记忆形成至关重要。在这项工作中,我们使用反应扩散方程在理想化的几何形状(椭球、球体和蘑菇形)中使用数学建模来研究棘突和棘突器的大小和形状对第二信使时空动力学的影响。我们的分析和模拟表明,在短时间尺度内,棘突的大小和形状以及棘突器的几何形状共同控制着第二信使的时空动力学。我们表明,几何形状的曲率产生了伪谐波函数,这些函数预测了沿着棘突头部的最大和最小浓度的位置。此外,我们表明,通过在棘突头部定位通量和改变棘突器和棘突头部之间的相对曲率和距离,可以精细调整浓度梯度的寿命。因此,我们已经确定了几个关键的几何决定因素,了解棘突头部和棘突器如何调节控制突触可塑性的小分子的短时间尺度化学动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b79/6691135/f053c7fca7db/41598_2019_48028_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验