The Ca2+ Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Unit of Theoretical Chronobiology, Faculté des Sciences CP231, Université Libre de Bruxelles (ULB), Brussels, Belgium.
Front Immunol. 2021 Apr 28;12:659790. doi: 10.3389/fimmu.2021.659790. eCollection 2021.
Ca signaling plays an essential role in T cell activation, which is a key step to start an adaptive immune response. During the transition from a quiescent to a fully activated state, Ca microdomains characterized by reduced spatial and temporal extents are observed in the junctions between the plasma membrane (PM) and the endoplasmic reticulum (ER). Such Ca responses can also occur in response to T cell adhesion to other cells or extracellular matrix proteins in otherwise unstimulated T cells. These non-TCR/CD3-dependent Ca microdomains rely on d--inositol 1,4,5-trisphosphate (IP) signaling and subsequent store operated Ca entry (SOCE) the ORAI/STIM system. The detailed molecular mechanism of adhesion-dependent Ca microdomain formation remains to be fully elucidated. We used mathematical modeling to investigate the spatiotemporal characteristics of T cell Ca microdomains and their molecular regulators. We developed a reaction-diffusion model using COMSOL Multiphysics to describe the evolution of cytosolic and ER Ca concentrations in a three-dimensional ER-PM junction. Equations are based on a previously proposed realistic description of the junction, which is extended to take into account IP receptors (IPR) that are located next to the junction. The first model only considered the ORAI channels and the SERCA pumps. Taking into account the existence of preformed clusters of ORAI1 and STIM2, ORAI1 slightly opens in conditions of a full ER. These simulated Ca microdomains are too small as compared to those observed in unstimulated T cells. When considering the opening of the IPRs located near the junction, the local depletion of ER Ca allows for larger Ca fluxes through the ORAI1 channels and hence larger local Ca concentrations. Computational results moreover show that Ca diffusion in the ER has a major impact on the Ca changes in the junction, by affecting the local Ca gradients in the sub-PM ER. Besides pointing out the likely involvement of the spontaneous openings of IPRs in the activation of SOCE in conditions of T cell adhesion prior to full activation, the model provides a tool to investigate how Ca microdomains extent and interact in response to T cell receptor activation.
钙信号在 T 细胞激活中起着至关重要的作用,这是启动适应性免疫反应的关键步骤。在从静止状态向完全激活状态的转变过程中,在质膜 (PM) 和内质网 (ER) 之间的连接处观察到特征在于空间和时间范围减小的钙微区。在未受刺激的 T 细胞中,T 细胞黏附于其他细胞或细胞外基质蛋白也会发生这种钙反应。这些非 TCR/CD3 依赖性钙微区依赖于 D-肌醇 1,4,5-三磷酸 (IP) 信号转导和随后的储存操作钙内流 (SOCE)——ORAI/STIM 系统。黏附依赖性钙微区形成的详细分子机制仍有待充分阐明。我们使用数学建模来研究 T 细胞钙微区及其分子调节剂的时空特征。我们使用 COMSOL Multiphysics 开发了一个反应-扩散模型,以描述三维 ER-PM 连接体中胞质和 ER 钙浓度的演变。方程基于对连接体的先前提出的现实描述,该描述扩展到考虑位于连接体附近的 IP 受体 (IPR)。第一个模型仅考虑了 ORAI 通道和 SERCA 泵。考虑到 ORAI1 和 STIM2 的预形成簇的存在,在 ER 完全的情况下,ORAI1 会轻微打开。与未受刺激的 T 细胞中观察到的相比,这些模拟的钙微区太小。当考虑位于连接体附近的 IPR 的打开时,ER 中的局部钙耗竭允许通过 ORAI1 通道进行更大的钙通量,从而导致局部钙浓度更大。计算结果还表明,ER 中的钙扩散对连接体中钙变化有重大影响,通过影响亚 PM ER 中的局部钙梯度。除了指出在 T 细胞黏附之前完全激活之前,IPR 的自发打开可能参与 SOCE 的激活外,该模型还提供了一种工具来研究钙微区如何在响应 T 细胞受体激活时扩展和相互作用。