Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
mBio. 2019 Aug 13;10(4):e01317-19. doi: 10.1128/mBio.01317-19.
Bacteria execute a variety of protein transport systems for maintaining the proper composition of their different cellular compartments. The SecYEG translocon serves as primary transport channel and is engaged in transporting two different substrate types. Inner membrane proteins are cotranslationally inserted into the membrane after their targeting by the signal recognition particle (SRP). In contrast, secretory proteins are posttranslationally translocated by the ATPase SecA. Recent data indicate that SecA can also bind to ribosomes close to the tunnel exit. We have mapped the interaction of SecA with translating and nontranslating ribosomes and demonstrate that the N terminus and the helical linker domain of SecA bind to an acidic patch on the surface of the ribosomal protein uL23. Intriguingly, both also insert deeply into the ribosomal tunnel to contact the intratunnel loop of uL23, which serves as a nascent chain sensor. This binding pattern is remarkably similar to that of SRP and indicates an identical interaction mode of the two targeting factors with ribosomes. In the presence of a nascent chain, SecA retracts from the tunnel but maintains contact with the surface of uL23. Our data further demonstrate that ribosome and membrane binding of SecA are mutually exclusive, as both events depend on the N terminus of SecA. Our study highlights the enormous plasticity of bacterial protein transport systems and reveals that the discrimination between SRP and SecA substrates is already initiated at the ribosome. Bacterial protein transport via the conserved SecYEG translocon is generally classified as either cotranslational, i.e., when transport is coupled to translation, or posttranslational, when translation and transport are separated. We show here that the ATPase SecA, which is considered to bind its substrates posttranslationally, already scans the ribosomal tunnel for potential substrates. In the presence of a nascent chain, SecA retracts from the tunnel but maintains contact with the ribosomal surface. This is remarkably similar to the ribosome-binding mode of the signal recognition particle, which mediates cotranslational transport. Our data reveal a striking plasticity of protein transport pathways, which likely enable bacteria to efficiently recognize and transport a large number of highly different substrates within their short generation time.
细菌执行各种蛋白质运输系统,以维持其不同细胞区室的适当组成。SecYEG 转运蛋白充当主要运输通道,并参与转运两种不同的底物类型。内在膜蛋白在被信号识别颗粒(SRP)靶向后,被共翻译插入到膜中。相比之下,分泌蛋白是通过 ATP 酶 SecA 进行翻译后易位的。最近的数据表明,SecA 也可以与接近隧道出口的核糖体结合。我们已经绘制了 SecA 与翻译和非翻译核糖体的相互作用图,并证明 SecA 的 N 端和螺旋连接域结合到核糖体蛋白 uL23 表面的酸性斑块上。有趣的是,两者都深深地插入核糖体隧道中,以接触 uL23 的隧道内环,该环充当新生链传感器。这种结合模式与 SRP 的结合模式非常相似,表明这两种靶向因子与核糖体的相互作用模式相同。在新生链存在的情况下,SecA 从隧道缩回,但与 uL23 的表面保持接触。我们的数据进一步表明,SecA 的核糖体和膜结合是相互排斥的,因为这两个事件都依赖于 SecA 的 N 端。我们的研究强调了细菌蛋白质运输系统的巨大可塑性,并表明 SRP 和 SecA 底物之间的区分已经在核糖体上开始。通过保守的 SecYEG 转运蛋白进行的细菌蛋白质运输通常分为共翻译,即当运输与翻译偶联时,或翻译后,即当翻译和运输分离时。我们在这里表明,被认为是翻译后结合其底物的 ATP 酶 SecA 已经在核糖体上扫描潜在的底物。在新生链存在的情况下,SecA 从隧道缩回,但与核糖体表面保持接触。这与介导共翻译运输的信号识别颗粒的核糖体结合模式非常相似。我们的数据揭示了蛋白质运输途径的惊人灵活性,这可能使细菌能够在其短的世代时间内有效地识别和运输大量高度不同的底物。