Rasero Javier, Pellicoro Mario, Angelini Leonardo, Cortes Jesus M, Marinazzo Daniele, Stramaglia Sebastiano
Biocruces Health Research Institute. Hospital Universitario de Cruces, Barakaldo, Spain.
Dipartimento di Fisica, Università degli Studi Aldo Moro, Bari, Italy.
Netw Neurosci. 2017 Oct 1;1(3):242-253. doi: 10.1162/NETN_a_00017.
A novel approach rooted on the notion of clustering, a strategy developed for community detection in complex networks, is proposed to cope with the heterogeneity that characterizes connectivity matrices in health and disease. The method can be summarized as follows: (a) define, for each node, a distance matrix for the set of subjects by comparing the connectivity pattern of that node in all pairs of subjects; (b) cluster the distance matrix for each node; (c) build the consensus network from the corresponding partitions; and (d) extract groups of subjects by finding the communities of the consensus network thus obtained. Different from the previous implementations of consensus clustering, we thus propose to use the consensus strategy to combine the information arising from the connectivity patterns of each node. The proposed approach may be seen either as an exploratory technique or as an unsupervised pretraining step to help the subsequent construction of a supervised classifier. Applications on a toy model and two real datasets show the effectiveness of the proposed methodology, which represents heterogeneity of a set of subjects in terms of a weighted network, the consensus matrix.
提出了一种基于聚类概念的新方法,该方法是为复杂网络中的社区检测而开发的一种策略,用于应对健康和疾病中连接矩阵所具有的异质性。该方法可总结如下:(a) 对于每个节点,通过比较该节点在所有受试者对中的连接模式,为受试者集定义一个距离矩阵;(b) 对每个节点的距离矩阵进行聚类;(c) 从相应的划分构建共识网络;以及 (d) 通过找到由此获得的共识网络的社区来提取受试者组。与之前的共识聚类实现不同,我们因此提议使用共识策略来组合来自每个节点连接模式的信息。所提出的方法既可以被视为一种探索性技术,也可以被视为一个无监督的预训练步骤,以帮助后续构建有监督的分类器。在一个玩具模型和两个真实数据集上的应用表明了所提出方法的有效性,该方法通过一个加权网络(共识矩阵)来表示一组受试者的异质性。