Suppr超能文献

用于全脑动态网络分析的混合建模框架。

A mixed-modeling framework for whole-brain dynamic network analysis.

作者信息

Bahrami Mohsen, Laurienti Paul J, Shappell Heather M, Dagenbach Dale, Simpson Sean L

机构信息

Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, USA.

Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA.

出版信息

Netw Neurosci. 2022 Jun 1;6(2):591-613. doi: 10.1162/netn_a_00238. eCollection 2022 Jun.

Abstract

The emerging area of dynamic brain network analysis has gained considerable attention in recent years. However, development of multivariate statistical frameworks that allow for examining the associations between phenotypic traits and dynamic patterns of system-level properties of the brain, and drawing statistical inference about such associations, has largely lagged behind. To address this need we developed a mixed-modeling framework that allows for assessing the relationship between any desired phenotype and dynamic patterns of whole-brain connectivity and topology. This novel framework also allows for simulating dynamic brain networks with respect to desired covariates. Unlike current tools, which largely use data-driven methods, our model-based method enables aligning neuroscientific hypotheses with the analytic approach. We demonstrate the utility of this model in identifying the relationship between fluid intelligence and dynamic brain networks by using resting-state fMRI (rfMRI) data from 200 participants in the Human Connectome Project (HCP) study. We also demonstrate the utility of this model to simulate dynamic brain networks at both group and individual levels. To our knowledge, this approach provides the first model-based statistical method for examining dynamic patterns of system-level properties of the brain and their relationships to phenotypic traits as well as simulating dynamic brain networks.

摘要

近年来,动态脑网络分析这一新兴领域备受关注。然而,能够用于检验表型特征与大脑系统水平属性的动态模式之间的关联,并对这种关联进行统计推断的多变量统计框架的发展,在很大程度上滞后了。为满足这一需求,我们开发了一种混合建模框架,该框架能够评估任何所需表型与全脑连通性和拓扑结构的动态模式之间的关系。这个新颖的框架还允许针对所需协变量模拟动态脑网络。与目前主要使用数据驱动方法的工具不同,我们基于模型的方法能够使神经科学假设与分析方法相一致。我们通过使用人类连接组计划(HCP)研究中200名参与者的静息态功能磁共振成像(rfMRI)数据,证明了该模型在识别流体智力与动态脑网络之间关系方面的效用。我们还展示了该模型在群体和个体层面模拟动态脑网络的效用。据我们所知,这种方法为检查大脑系统水平属性的动态模式及其与表型特征的关系以及模拟动态脑网络提供了首个基于模型的统计方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5023/9208000/4b52b3ad5b4d/netn-06-591-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验