Suppr超能文献

复杂脑网络中信息过滤的拓扑准则

A Topological Criterion for Filtering Information in Complex Brain Networks.

作者信息

De Vico Fallani Fabrizio, Latora Vito, Chavez Mario

机构信息

Inria Paris, Aramis project-team, Paris, France.

CNRS UMR-7225, Sorbonne Universités, UPMC Univ Paris 06, Inserm, Institut du cerveau et de la moelle (ICM) - Hôpital Pitié-Salpêtrière, Paris, France.

出版信息

PLoS Comput Biol. 2017 Jan 11;13(1):e1005305. doi: 10.1371/journal.pcbi.1005305. eCollection 2017 Jan.

Abstract

In many biological systems, the network of interactions between the elements can only be inferred from experimental measurements. In neuroscience, non-invasive imaging tools are extensively used to derive either structural or functional brain networks in-vivo. As a result of the inference process, we obtain a matrix of values corresponding to a fully connected and weighted network. To turn this into a useful sparse network, thresholding is typically adopted to cancel a percentage of the weakest connections. The structural properties of the resulting network depend on how much of the inferred connectivity is eventually retained. However, how to objectively fix this threshold is still an open issue. We introduce a criterion, the efficiency cost optimization (ECO), to select a threshold based on the optimization of the trade-off between the efficiency of a network and its wiring cost. We prove analytically and we confirm through numerical simulations that the connection density maximizing this trade-off emphasizes the intrinsic properties of a given network, while preserving its sparsity. Moreover, this density threshold can be determined a-priori, since the number of connections to filter only depends on the network size according to a power-law. We validate this result on several brain networks, from micro- to macro-scales, obtained with different imaging modalities. Finally, we test the potential of ECO in discriminating brain states with respect to alternative filtering methods. ECO advances our ability to analyze and compare biological networks, inferred from experimental data, in a fast and principled way.

摘要

在许多生物系统中,元素之间的相互作用网络只能从实验测量中推断出来。在神经科学领域,非侵入性成像工具被广泛用于在体内推导结构或功能脑网络。作为推断过程的结果,我们获得了一个对应于完全连接且加权网络的值矩阵。为了将其转化为有用的稀疏网络,通常采用阈值处理来消除一定比例最弱的连接。所得网络的结构特性取决于最终保留的推断连接性的多少。然而,如何客观地确定这个阈值仍然是一个悬而未决的问题。我们引入了一种标准,即效率成本优化(ECO),以基于网络效率与其布线成本之间权衡的优化来选择阈值。我们通过分析证明并通过数值模拟确认,使这种权衡最大化的连接密度强调了给定网络的内在特性,同时保持其稀疏性。此外,由于根据幂律,要过滤的连接数量仅取决于网络大小,所以这个密度阈值可以先验确定。我们在通过不同成像方式获得的从微观到宏观尺度的多个脑网络上验证了这一结果。最后,我们测试了ECO相对于其他滤波方法在区分脑状态方面的潜力。ECO提高了我们以快速且有原则的方式分析和比较从实验数据推断出的生物网络的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验