Suppr超能文献

病例难度和转诊决策的精准度:一种创新的自动化方法。

The precision of case difficulty and referral decisions: an innovative automated approach.

机构信息

Nair Hospital Dental College, Mumbai, 400008, India.

Northeastern University, Boston, USA.

出版信息

Clin Oral Investig. 2020 Jun;24(6):1909-1915. doi: 10.1007/s00784-019-03050-4. Epub 2019 Aug 13.

Abstract

OBJECTIVES

Endodontic treatment works as a successful treatment modality in several cases. However, it may fail due to some reasons unforeseeable by the dentist. Many failures can be prevented by carefully assessing the difficulty level of the case before initiating treatment or by referral to a specialist. This study presents an approach using machine learning to generate an algorithm which can help predict the difficulty level of the case and decide about a referral, with the help of the standard American Association of Endodontists (AAE) Endodontic Case Difficulty Assessment Form.

MATERIALS AND METHODS

Using the AAE Endodontic Case Difficulty Form after obtaining the patients' consent, 500 potential root canal patients were diagnosed. The filled forms were assessed by two pre-calibrated endodontists, and, in cases of conflicting opinion, a third endodontist's opinion was taken. Artificial neural network was used for generating the algorithm.

RESULTS

Using 500 filled AAE forms, a sensitivity of 94.96% was achieved by the machine learning algorithm.

CONCLUSION

This study provides an option for automation to the conventional method of predicting the difficulty level of a case, thus increasing the speed of decision-making and referrals if necessary.

CLINICAL RELEVANCE

An AAE Endodontic Case Difficulty Assessment Form when utilized along with machine learning can assist general dentists in rapid assessment of the case difficulty. This is a helpful tool in developing countries, where endodontic treatment and referral guidelines are often neglected. It also helps to make difficulty level assessments easier for novice practitioners, when they are in doubt about the same.

摘要

目的

在许多情况下,牙髓治疗是一种成功的治疗方式。然而,由于牙医无法预见的一些原因,它可能会失败。通过在开始治疗前仔细评估病例的难度级别,或者通过转介给专家,可以预防许多失败。本研究提出了一种使用机器学习生成算法的方法,该算法可以帮助预测病例的难度级别,并在标准的美国牙髓病协会(AAE)牙髓病例难度评估表的帮助下决定是否转介。

材料和方法

在获得患者同意后,使用 AAE 牙髓病例难度表对 500 名潜在根管患者进行诊断。填写的表格由两名经过预校准的牙髓病专家进行评估,如果意见不一致,则征求第三名牙髓病专家的意见。使用人工神经网络生成算法。

结果

使用 500 份填写的 AAE 表格,机器学习算法的灵敏度达到 94.96%。

结论

本研究为传统预测病例难度级别的方法提供了自动化选择,从而提高了决策和必要时转介的速度。

临床相关性

当与机器学习一起使用时,AAE 牙髓病例难度评估表可以帮助全科牙医快速评估病例的难度。这对于牙髓治疗和转介指南往往被忽视的发展中国家来说是一个有用的工具。当新手从业者对同一问题有疑问时,它也有助于更轻松地进行难度级别评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验