Suppr超能文献

一种用于 III 类手术决策的新型机器学习模型。

A novel machine learning model for class III surgery decision.

机构信息

Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, 1121 West Michigan Street, 46202, Indianapolis, IN, USA.

Indiana University School of Dentistry, Indianapolis, IN, USA.

出版信息

J Orofac Orthop. 2024 Jul;85(4):239-249. doi: 10.1007/s00056-022-00421-7. Epub 2022 Aug 26.

Abstract

PURPOSE

The primary purpose of this study was to develop a new machine learning model for the surgery/non-surgery decision in class III patients and evaluate the validity and reliability of this model.

METHODS

The sample consisted of 196 skeletal class III patients. All the cases were allocated randomly, 136 to the training set and the remaining 60 to the test set. Using the test set, the success rate of the artificial neural network model was estimated, along with a 95% confidence interval. To predict surgical cases, we trained a binary classifier using two different methods: random forest (RF) and logistic regression (LR).

RESULTS

Both the RF and the LR model showed high separability when classifying each patient for surgical or non-surgical treatment. RF achieved an area under the curve (AUC) of 0.9395 on the test set. 95% confidence intervals were computed by bootstrap sampling as lower bound = 0.7908 and higher bound = 0.9799. On the other hand, LR achieved an AUC of 0.937 on the test set. 95% confidence intervals were computed by bootstrap sampling as lower bound = 0.8467 and higher bound = 0.9812.

CONCLUSIONS

RF and LR machine learning models can be used to generate accurate and reliable algorithms to successfully classify patients up to 90%. The features selected by the algorithms coincide with the clinical features that we as clinicians weigh heavily when determining a treatment plan. This study further supports that overjet, Wits appraisal, lower incisor angulation, and Holdaway H angle can be used as strong predictors in assessing a patient's surgical needs.

摘要

目的

本研究的主要目的是开发一种用于 III 类患者手术/非手术决策的新机器学习模型,并评估该模型的有效性和可靠性。

方法

样本包括 196 名骨骼 III 类患者。所有病例均随机分配,136 例进入训练集,其余 60 例进入测试集。使用测试集,估计人工神经网络模型的成功率,并计算 95%置信区间。为了预测手术病例,我们使用两种不同的方法(随机森林(RF)和逻辑回归(LR))训练了一个二进制分类器。

结果

RF 和 LR 模型在对每个患者进行手术或非手术治疗分类时均表现出较高的可分离性。RF 在测试集上的曲线下面积(AUC)为 0.9395。95%置信区间通过自举抽样计算,下限为 0.7908,上限为 0.9799。另一方面,LR 在测试集上的 AUC 为 0.937。95%置信区间通过自举抽样计算,下限为 0.8467,上限为 0.9812。

结论

RF 和 LR 机器学习模型可用于生成准确可靠的算法,以成功分类 90%的患者。算法选择的特征与我们临床医生在确定治疗计划时非常重视的临床特征相吻合。本研究进一步支持可以将覆盖量、Wits 评估、下切牙角度和 Holdaway H 角用作评估患者手术需求的有力预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a123/11186927/e4326566a0cd/56_2022_421_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验