Suppr超能文献

化学计量学基因-反应关联可提高基于模型的分析性能: aldrin 慢性暴露对前列腺癌的代谢反应。

Stoichiometric gene-to-reaction associations enhance model-driven analysis performance: Metabolic response to chronic exposure to Aldrin in prostate cancer.

机构信息

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.

Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-24, 08034, Barcelona, Spain.

出版信息

BMC Genomics. 2019 Aug 15;20(1):652. doi: 10.1186/s12864-019-5979-4.

Abstract

BACKGROUND

Genome-scale metabolic models (GSMM) integrating transcriptomics have been widely used to study cancer metabolism. This integration is achieved through logical rules that describe the association between genes, proteins, and reactions (GPRs). However, current gene-to-reaction formulation lacks the stoichiometry describing the transcript copies necessary to generate an active catalytic unit, which limits our understanding of how genes modulate metabolism. The present work introduces a new state-of-the-art GPR formulation that considers the stoichiometry of the transcripts (S-GPR). As case of concept, this novel gene-to-reaction formulation was applied to investigate the metabolic effects of the chronic exposure to Aldrin, an endocrine disruptor, on DU145 prostate cancer cells. To this aim we integrated the transcriptomic data from Aldrin-exposed and non-exposed DU145 cells through S-GPR or GPR into a human GSMM by applying different constraint-based-methods.

RESULTS

Our study revealed a significant improvement of metabolite consumption/production predictions when S-GPRs are implemented. Furthermore, our computational analysis unveiled important alterations in carnitine shuttle and prostaglandine biosynthesis in Aldrin-exposed DU145 cells that is supported by bibliographic evidences of enhanced malignant phenotype.

CONCLUSIONS

The method developed in this work enables a more accurate integration of gene expression data into model-driven methods. Thus, the presented approach is conceptually new and paves the way for more in-depth studies of aberrant cancer metabolism and other diseases with strong metabolic component with important environmental and clinical implications.

摘要

背景

整合转录组学的基因组规模代谢模型(GSMM)已被广泛用于研究癌症代谢。这种整合是通过逻辑规则实现的,这些规则描述了基因、蛋白质和反应(GPR)之间的关联。然而,目前的基因到反应的公式化缺乏描述产生活性催化单元所需的转录本数量的化学计量学,这限制了我们对基因如何调节代谢的理解。本工作引入了一种新的最先进的 GPR 公式化方法,该方法考虑了转录本的化学计量学(S-GPR)。作为概念案例,这种新的基因到反应的公式化方法被应用于研究慢性暴露于 aldrin(一种内分泌干扰物)对 DU145 前列腺癌细胞代谢的影响。为此,我们通过应用不同的基于约束的方法,将 aldrin 暴露和未暴露的 DU145 细胞的转录组数据通过 S-GPR 或 GPR 整合到人类 GSMM 中。

结果

我们的研究表明,当实施 S-GPR 时,代谢物消耗/产生的预测有了显著的改善。此外,我们的计算分析揭示了 aldrin 暴露的 DU145 细胞中肉碱穿梭和前列腺素生物合成的重要改变,这得到了增强恶性表型的文献证据的支持。

结论

本工作中开发的方法能够更准确地将基因表达数据整合到模型驱动的方法中。因此,所提出的方法在概念上是新颖的,并为深入研究异常癌症代谢和其他具有重要环境和临床意义的强代谢成分的疾病铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d65/6694502/734b6a02172e/12864_2019_5979_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验