Suppr超能文献

通过排序和排除设计针对结核分枝杆菌的高阶抗生素组合。

Design of high-order antibiotic combinations against M. tuberculosis by ranking and exclusion.

机构信息

Faculty of Engineering and Natural Sciences, Uskudar University, İstanbul, Turkey.

Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Sci Rep. 2019 Aug 15;9(1):11876. doi: 10.1038/s41598-019-48410-y.

Abstract

Combinations of more than two drugs are routinely used for the treatment of pathogens and tumors. High-order combinations may be chosen due to their non-overlapping resistance mechanisms or for favorable drug interactions. Synergistic/antagonistic interactions occur when the combination has a higher/lower effect than the sum of individual drug effects. The standard treatment of Mycobacterium tuberculosis (Mtb) is an additive cocktail of three drugs which have different targets. Herein, we experimentally measured all 190 pairwise interactions among 20 antibiotics against Mtb growth. We used the pairwise interaction data to rank all possible high-order combinations by strength of synergy/antagonism. We used drug interaction profile correlation as a proxy for drug similarity to establish exclusion criteria for ideal combination therapies. Using this ranking and exclusion design (R/ED) framework, we modeled ways to improve the standard 3-drug combination with the addition of new drugs. We applied this framework to find the best 4-drug combinations against drug-resistant Mtb by adding new exclusion criteria to R/ED. Finally, we modeled alternating 2-order combinations as a cycling treatment and found optimized regimens significantly reduced the overall effective dose. R/ED provides an adaptable framework for the design of high-order drug combinations against any pathogen or tumor.

摘要

多种药物联合使用通常用于治疗病原体和肿瘤。由于具有非重叠的耐药机制或有利的药物相互作用,可能会选择高阶组合。当组合的效果高于单个药物效果的总和时,就会出现协同/拮抗作用。结核分枝杆菌 (Mtb) 的标准治疗是三种具有不同靶点的药物的添加剂鸡尾酒。在此,我们实验测量了针对 Mtb 生长的 20 种抗生素之间的所有 190 种成对相互作用。我们使用成对相互作用数据通过协同/拮抗作用的强度对所有可能的高阶组合进行排名。我们使用药物相互作用谱相关性作为药物相似性的代理,为理想的组合疗法建立排除标准。使用这种排名和排除设计 (R/ED) 框架,我们通过添加新药来改进标准的 3 种药物组合。我们通过向 R/ED 添加新的排除标准,将该框架应用于寻找针对耐药 Mtb 的最佳 4 种药物组合。最后,我们将交替的 2 阶组合建模为循环治疗,并发现优化方案显著降低了总有效剂量。R/ED 为针对任何病原体或肿瘤设计高阶药物组合提供了一个适应性强的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d57/6695482/20dfa2d57230/41598_2019_48410_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验