IEEE Trans Med Imaging. 2021 Oct;40(10):2642-2655. doi: 10.1109/TMI.2021.3054817. Epub 2021 Sep 30.
Zero-shot learning (ZSL) is one of the most promising avenues of annotation-efficient machine learning. In the era of deep learning, ZSL techniques have achieved unprecedented success. However, the developments of ZSL methods have taken place mostly for natural images. ZSL for medical images has remained largely unexplored. We design a novel strategy for generalized zero-shot diagnosis of chest radiographs. In doing so, we leverage the potential of multi-view semantic embedding, a useful yet less-explored direction for ZSL. Our design also incorporates a self-training phase to tackle the problem of noisy labels alongside improving the performance for classes not seen during training. Through rigorous experiments, we show that our model trained on one dataset can produce consistent performance across test datasets from different sources including those with very different quality. Comparisons with a number of state-of-the-art techniques show the superiority of the proposed method for generalized zero-shot chest x-ray diagnosis.
零样本学习(ZSL)是最有前途的注释高效机器学习方法之一。在深度学习时代,ZSL 技术取得了前所未有的成功。然而,ZSL 方法的发展主要针对自然图像。医学图像的 ZSL 仍然在很大程度上未被探索。我们设计了一种新的策略,用于对胸部 X 光片进行广义零样本诊断。为此,我们利用多视图语义嵌入的潜力,这是 ZSL 中一个有用但尚未得到充分探索的方向。我们的设计还结合了自训练阶段,以解决带有噪声标签的问题,并提高训练中未出现的类别的性能。通过严格的实验,我们表明,我们在一个数据集上训练的模型可以在来自不同来源的测试数据集上产生一致的性能,包括那些质量非常不同的数据集。与一些最先进的技术进行比较表明,所提出的方法在广义零样本胸部 X 射线诊断方面具有优越性。
IEEE Trans Med Imaging. 2021-10
Neural Netw. 2021-11
Intell Based Med. 2020-12
IEEE Trans Image Process. 2022
IEEE Trans Cybern. 2022-8
Neural Netw. 2019-9-6
J Am Med Inform Assoc. 2024-6-20
Sci Rep. 2023-12-11
Data Augment Label Imperfections (2022). 2022-9
Front Physiol. 2022-3-4
Cardiovasc Intervent Radiol. 2022-3
Radiol Artif Intell. 2021-10-6
IEEE Trans Med Imaging. 2021-10
IEEE Trans Med Imaging. 2020-7
Med Image Anal. 2019-10-13
IEEE Trans Med Imaging. 2020-3
AMIA Annu Symp Proc. 2018-4-16