文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于特征引导的多视图语义嵌入与自训练的广义零样本胸部 X 射线诊断。

Generalized Zero-Shot Chest X-Ray Diagnosis Through Trait-Guided Multi-View Semantic Embedding With Self-Training.

出版信息

IEEE Trans Med Imaging. 2021 Oct;40(10):2642-2655. doi: 10.1109/TMI.2021.3054817. Epub 2021 Sep 30.


DOI:10.1109/TMI.2021.3054817
PMID:33523805
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8591713/
Abstract

Zero-shot learning (ZSL) is one of the most promising avenues of annotation-efficient machine learning. In the era of deep learning, ZSL techniques have achieved unprecedented success. However, the developments of ZSL methods have taken place mostly for natural images. ZSL for medical images has remained largely unexplored. We design a novel strategy for generalized zero-shot diagnosis of chest radiographs. In doing so, we leverage the potential of multi-view semantic embedding, a useful yet less-explored direction for ZSL. Our design also incorporates a self-training phase to tackle the problem of noisy labels alongside improving the performance for classes not seen during training. Through rigorous experiments, we show that our model trained on one dataset can produce consistent performance across test datasets from different sources including those with very different quality. Comparisons with a number of state-of-the-art techniques show the superiority of the proposed method for generalized zero-shot chest x-ray diagnosis.

摘要

零样本学习(ZSL)是最有前途的注释高效机器学习方法之一。在深度学习时代,ZSL 技术取得了前所未有的成功。然而,ZSL 方法的发展主要针对自然图像。医学图像的 ZSL 仍然在很大程度上未被探索。我们设计了一种新的策略,用于对胸部 X 光片进行广义零样本诊断。为此,我们利用多视图语义嵌入的潜力,这是 ZSL 中一个有用但尚未得到充分探索的方向。我们的设计还结合了自训练阶段,以解决带有噪声标签的问题,并提高训练中未出现的类别的性能。通过严格的实验,我们表明,我们在一个数据集上训练的模型可以在来自不同来源的测试数据集上产生一致的性能,包括那些质量非常不同的数据集。与一些最先进的技术进行比较表明,所提出的方法在广义零样本胸部 X 射线诊断方面具有优越性。

相似文献

[1]
Generalized Zero-Shot Chest X-Ray Diagnosis Through Trait-Guided Multi-View Semantic Embedding With Self-Training.

IEEE Trans Med Imaging. 2021-10

[2]
Visual-guided attentive attributes embedding for zero-shot learning.

Neural Netw. 2021-11

[3]
Zero-shot learning and its applications from autonomous vehicles to COVID-19 diagnosis: A review.

Intell Based Med. 2020-12

[4]
Augmented semantic feature based generative network for generalized zero-shot learning.

Neural Netw. 2021-11

[5]
Bias-Eliminated Semantic Refinement for Any-Shot Learning.

IEEE Trans Image Process. 2022

[6]
Cross Knowledge-based Generative Zero-Shot Learning approach with Taxonomy Regularization.

Neural Netw. 2021-7

[7]
Investigating the Bilateral Connections in Generative Zero-Shot Learning.

IEEE Trans Cybern. 2022-8

[8]
HFM: A Hybrid Feature Model Based on Conditional Auto Encoders for Zero-Shot Learning.

J Imaging. 2022-6-16

[9]
Multi-view graph representation with similarity diffusion for general zero-shot learning.

Neural Netw. 2023-9

[10]
Label-activating framework for zero-shot learning.

Neural Netw. 2019-9-6

引用本文的文献

[1]
Deep learning with noisy labels in medical prediction problems: a scoping review.

J Am Med Inform Assoc. 2024-6-20

[2]
Severity of error in hierarchical datasets.

Sci Rep. 2023-12-11

[3]
Long-Tailed Classification of Thorax Diseases on Chest X-Ray: A New Benchmark Study.

Data Augment Label Imperfections (2022). 2022-9

[4]
Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning.

Nat Biomed Eng. 2022-12

[5]
Towards a safe and efficient clinical implementation of machine learning in radiation oncology by exploring model interpretability, explainability and data-model dependency.

Phys Med Biol. 2022-5-27

[6]
Tissue Cytometry With Machine Learning in Kidney: From Small Specimens to Big Data.

Front Physiol. 2022-3-4

[7]
Prime Time for Artificial Intelligence in Interventional Radiology.

Cardiovasc Intervent Radiol. 2022-3

[8]
Training Strategies for Radiology Deep Learning Models in Data-limited Scenarios.

Radiol Artif Intell. 2021-10-6

[9]
Artificial Intelligence in Medical Imaging and its Impact on the Rare Disease Community: Threats, Challenges and Opportunities.

PET Clin. 2022-1

[10]
Guest Editorial Annotation-Efficient Deep Learning: The Holy Grail of Medical Imaging.

IEEE Trans Med Imaging. 2021-10

本文引用的文献

[1]
Automated abnormality classification of chest radiographs using deep convolutional neural networks.

NPJ Digit Med. 2020-5-14

[2]
Artificial Intelligence System Approaching Neuroradiologist-level Differential Diagnosis Accuracy at Brain MRI.

Radiology. 2020-4-7

[3]
One-Shot Learning for Deformable Medical Image Registration and Periodic Motion Tracking.

IEEE Trans Med Imaging. 2020-7

[4]
'Squeeze & excite' guided few-shot segmentation of volumetric images.

Med Image Anal. 2019-10-13

[5]
One-Shot Generative Adversarial Learning for MRI Segmentation of Craniomaxillofacial Bony Structures.

IEEE Trans Med Imaging. 2020-3

[6]
Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists.

PLoS Med. 2018-11-20

[7]
Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs.

Radiology. 2018-9-25

[8]
Intelligent Word Embeddings of Free-Text Radiology Reports.

AMIA Annu Symp Proc. 2018-4-16

[9]
Radiology report annotation using intelligent word embeddings: Applied to multi-institutional chest CT cohort.

J Biomed Inform. 2017-11-23

[10]
Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks.

Radiology. 2017-4-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索