Suppr超能文献

用于皮肤病变诊断的风险感知机器学习分类器

Risk-Aware Machine Learning Classifier for Skin Lesion Diagnosis.

作者信息

Mobiny Aryan, Singh Aditi, Van Nguyen Hien

机构信息

Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA.

出版信息

J Clin Med. 2019 Aug 17;8(8):1241. doi: 10.3390/jcm8081241.

Abstract

Knowing when a machine learning system is not confident about its prediction is crucial in medical domains where safety is critical. Ideally, a machine learning algorithm should make a prediction only when it is highly certain about its competency, and refer the case to physicians otherwise. In this paper, we investigate how Bayesian deep learning can improve the performance of the machine-physician team in the skin lesion classification task. We used the publicly available HAM10000 dataset, which includes samples from seven common skin lesion categories: Melanoma (MEL), Melanocytic Nevi (NV), Basal Cell Carcinoma (BCC), Actinic Keratoses and Intraepithelial Carcinoma (AKIEC), Benign Keratosis (BKL), Dermatofibroma (DF), and Vascular (VASC) lesions. Our experimental results show that Bayesian deep networks can boost the diagnostic performance of the standard DenseNet-169 model from 81.35% to 83.59% without incurring additional parameters or heavy computation. More importantly, a hybrid physician-machine workflow reaches a classification accuracy of 90 % while only referring 35 % of the cases to physicians. The findings are expected to generalize to other medical diagnosis applications. We believe that the availability of risk-aware machine learning methods will enable a wider adoption of machine learning technology in clinical settings.

摘要

在安全至关重要的医学领域,了解机器学习系统何时对其预测缺乏信心至关重要。理想情况下,机器学习算法应该仅在对自身能力高度确定时才进行预测,否则应将病例提交给医生。在本文中,我们研究了贝叶斯深度学习如何在皮肤病变分类任务中提高机器 - 医生团队的性能。我们使用了公开可用的HAM10000数据集,其中包括来自七种常见皮肤病变类别的样本:黑色素瘤(MEL)、黑素细胞痣(NV)、基底细胞癌(BCC)、光化性角化病和上皮内癌(AKIEC)、良性角化病(BKL)、皮肤纤维瘤(DF)和血管(VASC)病变。我们的实验结果表明,贝叶斯深度网络可以在不增加额外参数或繁重计算的情况下,将标准DenseNet - 169模型的诊断性能从81.35%提高到83.59%。更重要的是,一种医生 - 机器混合工作流程达到了90%的分类准确率,同时仅将35%的病例提交给医生。这些发现有望推广到其他医学诊断应用中。我们相信,风险感知机器学习方法的可用性将使机器学习技术在临床环境中得到更广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2250/6723257/e0006da24467/jcm-08-01241-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验