文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 AlexNet 的迁移学习对 7 类皮肤损伤进行分类。

Classification of Skin Lesions into Seven Classes Using Transfer Learning with AlexNet.

机构信息

Department of Information Technology, Faculty of Computers and Informatics, Zagazig, University, Zagazig 44519, Egypt.

Department of Robotics and Intelligent Machines, Faculty of Artificial Intelligence, KafrElSheikh University, KafrElSheikh, 33511, Egypt.

出版信息

J Digit Imaging. 2020 Oct;33(5):1325-1334. doi: 10.1007/s10278-020-00371-9.


DOI:10.1007/s10278-020-00371-9
PMID:32607904
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7573031/
Abstract

Melanoma is deadly skin cancer. There is a high similarity between different kinds of skin lesions, which lead to incorrect classification. Accurate classification of a skin lesion in its early stages saves human life. In this paper, a highly accurate method proposed for the skin lesion classification process. The proposed method utilized transfer learning with pre-trained AlexNet. The parameters of the original model used as initial values, where we randomly initialize the weights of the last three replaced layers. The proposed method was tested using the most recent public dataset, ISIC 2018. Based on the obtained results, we could say that the proposed method achieved a great success where it accurately classifies the skin lesions into seven classes. These classes are melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign keratosis, dermatofibroma, and vascular lesion. The achieved percentages are 98.70%, 95.60%, 99.27%, and 95.06% for accuracy, sensitivity, specificity, and precision, respectively.

摘要

黑色素瘤是一种致命的皮肤癌。不同类型的皮肤损伤之间有很高的相似性,这导致了错误的分类。在早期准确地对皮肤损伤进行分类可以挽救生命。在本文中,提出了一种用于皮肤损伤分类过程的高精度方法。该方法利用带有预训练 AlexNet 的迁移学习。使用原始模型的参数作为初始值,其中我们随机初始化最后三个替换层的权重。该方法使用最新的公共数据集 ISIC 2018 进行了测试。根据获得的结果,可以说该方法取得了巨大的成功,能够将皮肤损伤准确地分为七类。这些类别是黑色素瘤、黑色素细胞痣、基底细胞癌、光化性角化病、良性角化病、皮肤纤维瘤和血管病变。准确性、敏感性、特异性和精度的百分比分别为 98.70%、95.60%、99.27%和 95.06%。

相似文献

[1]
Classification of Skin Lesions into Seven Classes Using Transfer Learning with AlexNet.

J Digit Imaging. 2020-10

[2]
Classification of skin lesions using transfer learning and augmentation with Alex-net.

PLoS One. 2019-5-21

[3]
A Deep Learning Approach to Skin Cancer Detection in Dermoscopy Images.

J Biomed Phys Eng. 2020-12-1

[4]
SCDNet: A Deep Learning-Based Framework for the Multiclassification of Skin Cancer Using Dermoscopy Images.

Sensors (Basel). 2022-7-28

[5]
Design and validation of a new machine-learning-based diagnostic tool for the differentiation of dermatoscopic skin cancer images.

PLoS One. 2023

[6]
Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms.

Comput Math Methods Med. 2021

[7]
Enhancing Skin Lesion Detection: A Multistage Multiclass Convolutional Neural Network-Based Framework.

Bioengineering (Basel). 2023-12-15

[8]
Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study.

Lancet Oncol. 2019-6-12

[9]
Skin Lesion Classification Using Additional Patient Information.

Biomed Res Int. 2021

[10]
Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions.

Acta Dermatovenerol Croat. 2018-4

引用本文的文献

[1]
Artificial intelligence-enabled precision medicine for inflammatory skin diseases.

ArXiv. 2025-5-14

[2]
Advances in computer vision and deep learning-facilitated early detection of melanoma.

Brief Funct Genomics. 2025-1-15

[3]
Convolutional Neural Network Models for Visual Classification of Pressure Ulcer Stages: Cross-Sectional Study.

JMIR Med Inform. 2025-3-25

[4]
Skin cancer detection using dermoscopic images with convolutional neural network.

Sci Rep. 2025-3-1

[5]
Diagnosis and prognosis of melanoma from dermoscopy images using machine learning and deep learning: a systematic literature review.

BMC Cancer. 2025-1-13

[6]
Sg-snn: a self-organizing spiking neural network based on temporal information.

Cogn Neurodyn. 2025-12

[7]
MobileNet-V2: An Enhanced Skin Disease Classification by Attention and Multi-Scale Features.

J Imaging Inform Med. 2025-6

[8]
Enhancing Deep Learning Model Explainability in Brain Tumor Datasets Using Post-Heuristic Approaches.

J Imaging. 2024-9-18

[9]
Two-step hierarchical binary classification of cancerous skin lesions using transfer learning and the random forest algorithm.

Vis Comput Ind Biomed Art. 2024-6-17

[10]
An approach to the dermatological classification of histopathological skin images using a hybridized CNN-DenseNet model.

PeerJ Comput Sci. 2024-2-26

本文引用的文献

[1]
Classification of skin lesions using transfer learning and augmentation with Alex-net.

PLoS One. 2019-5-21

[2]
Skin Lesion Classification Using CNNs With Patch-Based Attention and Diagnosis-Guided Loss Weighting.

IEEE Trans Biomed Eng. 2019-5-9

[3]
A novel cumulative level difference mean based GLDM and modified ABCD features ranked using eigenvector centrality approach for four skin lesion types classification.

Comput Methods Programs Biomed. 2018-8-24

[4]
Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review.

J Med Internet Res. 2018-10-17

[5]
Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network.

Sensors (Basel). 2018-2-11

[6]
Rethinking Skin Lesion Segmentation in a Convolutional Classifier.

J Digit Imaging. 2018-8

[7]
Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images.

J Am Acad Dermatol. 2017-9-29

[8]
Three-Category Classification of Magnetic Resonance Hearing Loss Images Based on Deep Autoencoder.

J Med Syst. 2017-9-11

[9]
Dermatologist-level classification of skin cancer with deep neural networks.

Nature. 2017-2-2

[10]
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks.

IEEE Trans Med Imaging. 2016-12-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索