Bui Dieu Tien, Moayedi Hossein, Kalantar Bahareh, Osouli Abdolreza, Pradhan Biswajeet, Nguyen Hoang, Rashid Ahmad Safuan A
Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Sensors (Basel). 2019 Aug 17;19(16):3590. doi: 10.3390/s19163590.
In this research, the novel metaheuristic algorithm Harris hawks optimization (HHO) is applied to landslide susceptibility analysis in Western Iran. To this end, the HHO is synthesized with an artificial neural network (ANN) to optimize its performance. A spatial database comprising 208 historical landslides, as well as 14 landslide conditioning factors-elevation, slope aspect, plan curvature, profile curvature, soil type, lithology, distance to the river, distance to the road, distance to the fault, land cover, slope degree, stream power index (SPI), topographic wetness index (TWI), and rainfall-is prepared to develop the ANN and HHO-ANN predictive tools. Mean square error and mean absolute error criteria are defined to measure the performance error of the models, and area under the receiving operating characteristic curve (AUROC) is used to evaluate the accuracy of the generated susceptibility maps. The findings showed that the HHO algorithm effectively improved the performance of ANN in both recognizing (AUROC = 0.731 and AUROC = 0.777) and predicting (AUROC = 0.720 and AUROC = 0.773) the landslide pattern.
在本研究中,新型元启发式算法哈里斯鹰优化算法(HHO)被应用于伊朗西部的滑坡易发性分析。为此,将HHO与人工神经网络(ANN)相结合以优化其性能。准备了一个空间数据库,其中包括208处历史滑坡以及14个滑坡条件因素——海拔、坡向、平面曲率、剖面曲率、土壤类型、岩性、距河流距离、距道路距离、距断层距离、土地覆盖、坡度、河流功率指数(SPI)、地形湿度指数(TWI)和降雨量,用于开发ANN和HHO-ANN预测工具。定义均方误差和平均绝对误差标准来衡量模型的性能误差,并使用接收操作特征曲线下的面积(AUROC)来评估生成的易发性地图的准确性。研究结果表明,HHO算法在识别(AUROC = 0.731和AUROC = 0.777)和预测(AUROC = 0.720和AUROC = 0.773)滑坡模式方面均有效提高了ANN的性能。