Suppr超能文献

利用机器学习算法和遥感数据在热带环境下进行滑坡易发性制图。

Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment.

机构信息

Geographic Information Science Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.

Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.

出版信息

Int J Environ Res Public Health. 2020 Jul 8;17(14):4933. doi: 10.3390/ijerph17144933.

Abstract

We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature, stream power index, and topographic wetness index). We carried out the validation process using the area under the receiver operating characteristic curve (AUC) and several parametric and non-parametric performance metrics, including positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests. The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94) and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility. Our findings provide insights into the development of more efficient and accurate landslide predictive models that can be used by decision makers and land-use managers to mitigate landslide hazards.

摘要

我们使用 AdaBoost(AB)、交替决策树(ADTree)及其组合作为集成模型(AB-ADTree),对马来西亚金马仑高原的滑坡进行空间预测。这些模型是使用合成孔径雷达干涉测量、谷歌地球图像和实地调查编制的 152 个滑坡数据库进行训练的,并使用了 17 个条件因素(坡度、方位、海拔、距道路的距离、距河流的距离、与断层的接近度、道路密度、河流密度、归一化差异植被指数、降雨量、土地覆盖、岩性、土壤类型、曲率、剖面曲率、水流功率指数和地形湿度指数)。我们使用接收者操作特征曲线下的面积(AUC)和几个参数和非参数性能指标(包括阳性预测值、阴性预测值、灵敏度、特异性、准确性、均方根误差以及 Friedman 和 Wilcoxon 符号秩检验)进行了验证过程。AB 模型(AUC = 0.96)的表现优于集成的 AB-ADTree 模型(AUC = 0.94),并且在预测滑坡易感性方面成功地优于 ADTree 模型(AUC = 0.59)。我们的研究结果为开发更高效和准确的滑坡预测模型提供了思路,这些模型可被决策者和土地利用管理者用于减轻滑坡灾害。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb46/7400293/72b6a4428d9f/ijerph-17-04933-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验