Ilett Martha, S'ari Mark, Freeman Helen, Aslam Zabeada, Koniuch Natalia, Afzali Maryam, Cattle James, Hooley Robert, Roncal-Herrero Teresa, Collins Sean M, Hondow Nicole, Brown Andy, Brydson Rik
Leeds Electron Microscopy and Spectroscopy (LEMAS) Centre, School of Chemical and Process Engineering, Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, UK.
Philos Trans A Math Phys Eng Sci. 2020 Dec 11;378(2186):20190601. doi: 10.1098/rsta.2019.0601. Epub 2020 Oct 26.
We review the use of transmission electron microscopy (TEM) and associated techniques for the analysis of beam-sensitive materials and complex, multiphase systems or close to their native state. We focus on materials prone to damage by radiolysis and explain that this process cannot be eliminated or switched off, requiring TEM analysis to be done within a dose budget to achieve an optimum dose-limited resolution. We highlight the importance of determining the damage sensitivity of a particular system in terms of characteristic changes that occur on irradiation under both an electron fluence and flux by presenting results from a series of molecular crystals. We discuss the choice of electron beam accelerating voltage and detectors for optimizing resolution and outline the different strategies employed for low-dose microscopy in relation to the damage processes in operation. In particular, we discuss the use of scanning TEM (STEM) techniques for maximizing information content from high-resolution imaging and spectroscopy of minerals and molecular crystals. We suggest how this understanding can then be carried forward for analysis of samples interacting with liquids and gases, provided any electron beam-induced alteration of a specimen is controlled or used to drive a chosen reaction. Finally, we demonstrate that cryo-TEM of nanoparticle samples snap-frozen in vitreous ice can play a significant role in benchmarking dynamic processes at higher resolution. This article is part of a discussion meeting issue 'Dynamic microscopy relating structure and function'.
我们回顾了透射电子显微镜(TEM)及其相关技术在分析对电子束敏感的材料、复杂多相体系或接近其原始状态的体系中的应用。我们聚焦于易受辐射分解损伤的材料,并解释了这一过程无法消除或关闭,这就要求在剂量预算范围内进行TEM分析,以实现最佳的剂量限制分辨率。通过展示一系列分子晶体的结果,我们强调了根据在电子注量和通量照射下发生的特征变化来确定特定体系损伤敏感性的重要性。我们讨论了用于优化分辨率的电子束加速电压和探测器的选择,并概述了与运行中的损伤过程相关的低剂量显微镜所采用的不同策略。特别是,我们讨论了使用扫描透射电子显微镜(STEM)技术从矿物和分子晶体的高分辨率成像和光谱中获取最大信息量。我们提出,如果能够控制或利用任何电子束引起的样品变化来驱动特定反应,那么如何将这种认识应用于与液体和气体相互作用的样品分析。最后,我们证明,在玻璃态冰中快速冷冻的纳米颗粒样品的低温TEM能够在更高分辨率下对动态过程进行基准测试方面发挥重要作用。本文是“结构与功能相关的动态显微镜”讨论会议文集的一部分。