Suppr超能文献

莫特VO-碳纳米管复合器件的快速尖峰

Fast Spiking of a Mott VO-Carbon Nanotube Composite Device.

作者信息

Bohaichuk Stephanie M, Kumar Suhas, Pitner Greg, McClellan Connor J, Jeong Jaewoo, Samant Mahesh G, Wong H-S Philip, Parkin Stuart S P, Williams R Stanley, Pop Eric

机构信息

Electrical Engineering , Stanford University , Stanford , California 94305 , United States.

Hewlett-Packard Laboratories , 1501 Page Mill Road , Palo Alto , California 94304 , United States.

出版信息

Nano Lett. 2019 Oct 9;19(10):6751-6755. doi: 10.1021/acs.nanolett.9b01554. Epub 2019 Aug 28.

Abstract

The recent surge of interest in brain-inspired computing and power-efficient electronics has dramatically bolstered development of computation and communication using neuron-like spiking signals. Devices that can produce rapid and energy-efficient spiking could significantly advance these applications. Here we demonstrate direct current or voltage-driven periodic spiking with sub-20 ns pulse widths from a single device composed of a thin VO film with a metallic carbon nanotube as a nanoscale heater, without using an external capacitor. Compared with VO-only devices, adding the nanotube heater dramatically decreases the transient duration and pulse energy, and increases the spiking frequency, by up to 3 orders of magnitude. This is caused by heating and cooling of the VO across its insulator-metal transition being localized to a nanoscale conduction channel in an otherwise bulk medium. This result provides an important component of energy-efficient neuromorphic computing systems and a lithography-free technique for energy-scaling of electronic devices that operate via bulk mechanisms.

摘要

最近对受大脑启发的计算和高能效电子学的兴趣激增,极大地推动了使用类神经元尖峰信号进行计算和通信的发展。能够产生快速且高能效尖峰的设备可以显著推进这些应用。在此,我们展示了由具有金属碳纳米管作为纳米级加热器的薄VO薄膜组成的单个设备在不使用外部电容器的情况下产生脉宽低于20 ns的直流或电压驱动的周期性尖峰。与仅含VO的设备相比,添加纳米管加热器显著缩短了瞬态持续时间并降低了脉冲能量,同时将尖峰频率提高了多达3个数量级。这是由于VO在其绝缘体 - 金属转变过程中的加热和冷却局限于原本是块状介质中的纳米级传导通道。这一结果为高能效神经形态计算系统提供了一个重要组件,并为通过块状机制运行的电子设备的能量缩放提供了一种无光刻技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验