Suppr超能文献

复杂样本中个体内完全缺失重复测量数据的多重填补:应用于国家健康与营养检查调查中的加速度计数据

Multiple imputation of completely missing repeated measures data within person from a complex sample: application to accelerometer data in the National Health and Nutrition Examination Survey.

作者信息

Liu Benmei, Yu Mandi, Graubard Barry I, Troiano Richard P, Schenker Nathaniel

机构信息

Division of Cancer Control and Population Science, National Cancer Institute, Rockville, MD, U.S.A..

Division of Cancer Control and Population Science, National Cancer Institute, Rockville, MD, U.S.A.

出版信息

Stat Med. 2016 Dec 10;35(28):5170-5188. doi: 10.1002/sim.7049. Epub 2016 Aug 2.

Abstract

The Physical Activity Monitor component was introduced into the 2003-2004 National Health and Nutrition Examination Survey (NHANES) to collect objective information on physical activity including both movement intensity counts and ambulatory steps. Because of an error in the accelerometer device initialization process, the steps data were missing for all participants in several primary sampling units, typically a single county or group of contiguous counties, who had intensity count data from their accelerometers. To avoid potential bias and loss in efficiency in estimation and inference involving the steps data, we considered methods to accurately impute the missing values for steps collected in the 2003-2004 NHANES. The objective was to come up with an efficient imputation method that minimized model-based assumptions. We adopted a multiple imputation approach based on additive regression, bootstrapping and predictive mean matching methods. This method fits alternative conditional expectation (ace) models, which use an automated procedure to estimate optimal transformations for both the predictor and response variables. This paper describes the approaches used in this imputation and evaluates the methods by comparing the distributions of the original and the imputed data. A simulation study using the observed data is also conducted as part of the model diagnostics. Finally, some real data analyses are performed to compare the before and after imputation results. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

摘要

身体活动监测组件被引入2003 - 2004年国家健康与营养检查调查(NHANES),以收集有关身体活动的客观信息,包括运动强度计数和步行步数。由于加速度计设备初始化过程中的一个错误,几个主要抽样单元(通常是单个县或一组相邻县)的所有参与者的步数数据缺失,而这些参与者从加速度计中获取了强度计数数据。为了避免在涉及步数数据的估计和推断中出现潜在偏差和效率损失,我们考虑了一些方法来准确插补2003 - 2004年NHANES中收集的步数缺失值。目标是提出一种有效的插补方法,将基于模型的假设最小化。我们采用了基于加法回归、自助法和预测均值匹配方法的多重插补方法。该方法拟合替代条件期望(ace)模型,该模型使用自动程序来估计预测变量和响应变量的最优变换。本文描述了这种插补所使用的方法,并通过比较原始数据和插补后数据的分布来评估这些方法。作为模型诊断的一部分,还使用观测数据进行了模拟研究。最后,进行了一些实际数据分析,以比较插补前后的结果。2016年发表。本文是美国政府作品,在美国属于公共领域。

相似文献

5
Missing value imputation for physical activity data measured by accelerometer.通过加速度计测量的身体活动数据的缺失值插补
Stat Methods Med Res. 2018 Feb;27(2):490-506. doi: 10.1177/0962280216633248. Epub 2016 Mar 17.
8
Imputation of missing data when measuring physical activity by accelerometry.通过加速度计测量身体活动时缺失数据的插补
Med Sci Sports Exerc. 2005 Nov;37(11 Suppl):S555-62. doi: 10.1249/01.mss.0000185651.59486.4e.
10

引用本文的文献

本文引用的文献

3
Peak stepping cadence in free-living adults: 2005-2006 NHANES.成年人自由活动时的最大步频:2005-2006 年 NHANES。
J Phys Act Health. 2012 Nov;9(8):1125-9. doi: 10.1123/jpah.9.8.1125. Epub 2011 Dec 27.
4
Patterns of adult stepping cadence in the 2005-2006 NHANES.2005-2006 年 NHANES 中成年人的步伐节奏模式。
Prev Med. 2011 Sep;53(3):178-81. doi: 10.1016/j.ypmed.2011.06.004. Epub 2011 Jun 25.
7
Accelerometer-determined steps/day and metabolic syndrome.计步器测定的步数/天与代谢综合征。
Am J Prev Med. 2010 Jun;38(6):575-82. doi: 10.1016/j.amepre.2010.02.015.
9
Amount of time spent in sedentary behaviors in the United States, 2003-2004.2003 - 2004年美国久坐行为的时长
Am J Epidemiol. 2008 Apr 1;167(7):875-81. doi: 10.1093/aje/kwm390. Epub 2008 Feb 25.
10
Physical activity in the United States measured by accelerometer.在美国,通过加速度计测量身体活动。
Med Sci Sports Exerc. 2008 Jan;40(1):181-8. doi: 10.1249/mss.0b013e31815a51b3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验