Suppr超能文献

用于探究量子点光伏器件极限的原位界面工程

In situ interface engineering for probing the limit of quantum dot photovoltaic devices.

作者信息

Dong Hui, Xu Feng, Sun Ziqi, Wu Xing, Zhang Qiubo, Zhai Yusheng, Tan Xiao Dong, He Longbing, Xu Tao, Zhang Ze, Duan Xiangfeng, Sun Litao

机构信息

SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China.

Key Laboratory of Welding Robot and Application Technology of Hunan Province, Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of Education, Xiangtan University, Xiangtan, China.

出版信息

Nat Nanotechnol. 2019 Oct;14(10):950-956. doi: 10.1038/s41565-019-0526-7. Epub 2019 Aug 26.

Abstract

Quantum dot (QD) photovoltaic devices are attractive for their low-cost synthesis, tunable band gap and potentially high power conversion efficiency (PCE). However, the experimentally achieved efficiency to date remains far from ideal. Here, we report an in-situ fabrication and investigation of single TiO-nanowire/CdSe-QD heterojunction solar cell (QDHSC) using a custom-designed photoelectric transmission electron microscope (TEM) holder. A mobile counter electrode is used to precisely tune the interface area for in situ photoelectrical measurements, which reveals a strong interface area dependent PCE. Theoretical simulations show that the simplified single nanowire solar cell structure can minimize the interface area and associated charge scattering to enable an efficient charge collection. Additionally, the optical antenna effect of nanowire-based QDHSCs can further enhance the absorption and boost the PCE. This study establishes a robust 'nanolab' platform in a TEM for in situ photoelectrical studies and provides valuable insight into the interfacial effects in nanoscale solar cells.

摘要

量子点(QD)光伏器件因其低成本合成、可调节带隙以及潜在的高功率转换效率(PCE)而备受关注。然而,迄今为止实验所实现的效率仍远不理想。在此,我们报告了使用定制设计的光电透射电子显微镜(TEM)支架对单个TiO纳米线/CdSe量子点异质结太阳能电池(QDHSC)进行原位制备和研究。使用可移动的对电极精确调节界面面积以进行原位光电测量,结果表明功率转换效率强烈依赖于界面面积。理论模拟表明,简化的单纳米线太阳能电池结构可使界面面积和相关电荷散射最小化,从而实现高效的电荷收集。此外,基于纳米线的QDHSCs的光学天线效应可进一步增强吸收并提高功率转换效率。本研究在TEM中建立了一个强大的“纳米实验室”平台用于原位光电研究,并为纳米级太阳能电池中的界面效应提供了有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验