Zhang Kenan, Ding Changchun, She Yihong, Wu Zhen, Zhao Changhui, Pan Baojun, Zhang Lijie, Zhou Wei, Fan Qunchao
School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, 610039, China.
School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China.
Nanoscale Res Lett. 2020 Feb 3;15(1):32. doi: 10.1186/s11671-020-3268-4.
Mixed-dimensional (2D + nD, n = 0, 1, and 3) heterostructures opened up a new avenue for fundamental physics studies and applied nanodevice designs. Herein, a novel type-II staggered band alignment CuFeO/MoS mixed-dimensional heterostructures (MHs) that present a distinct enhanced (20-28%) acetone gas sensing response compared with pure CuFeO nanotubes are reported. Based on the structural characterizations and DFT calculation results, the tentative mechanism for the improvement of gas sensing performance of the CuFeO/MoS MHs can be attributed to the synergic effect of type-II band alignment and the MoS active sites.
混合维度(二维 + n 维,n = 0、1 和 3)异质结构为基础物理研究和应用纳米器件设计开辟了一条新途径。在此,报道了一种新型的 II 型交错能带排列的 CuFeO/MoS 混合维度异质结构(MHs),与纯 CuFeO 纳米管相比,其对丙酮气体的传感响应显著增强(20 - 28%)。基于结构表征和密度泛函理论(DFT)计算结果,CuFeO/MoS MHs 气敏性能改善的初步机制可归因于 II 型能带排列和 MoS 活性位点的协同效应。