MOA Key Laboratory of Plant Pathology, Joint International Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China.
College of Plant Health and Medicine, and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China.
Biochem J. 2019 Nov 15;476(21):3227-3240. doi: 10.1042/BCJ20190289.
Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3-β4 loop to α0 helix) and movement of a 'shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a 'closed' state compared with its 'open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.
海藻糖-6-磷酸(T6P)合酶(Tps1)催化 UDP-葡萄糖(UDPG)(或 GDPG 等)和葡萄糖-6-磷酸(G6P)形成 T6P,但其结构基础尚未得到很好的研究。MoTps1(稻瘟病菌 Tps1)在碳氮代谢中起着关键作用,但它的结构信息尚不清楚。本文报道了 MoTps1 apo、二元(与 UDPG)和三元(与 UDPG/G6P 或 UDP/T6P)复合物的晶体结构。MoTps1 由两个修饰的 Rossmann 折叠结构域和中间的催化中心组成。与大肠杆菌 OtsA(EcOtsA,大肠杆菌的 Tps1)不同,MoTps1 以单体、二聚体和多聚体的混合物形式存在于溶液中。链间盐桥,在 EcOtsA 中不完全保守,在 MoTps1 多聚体形成中起主要作用。MoTps1 C 端结构域与 UDPG 的结合改变了 MoTps1 的底物口袋。在 MoTps1 三元复合物结构中,检测到 UDP 和 T6P,它们是 UDPG 和 G6P 的产物,观察到 N 端结构域的构象发生显著重排,包括结构重排(β3-β4 环至 α0 螺旋)和“移位区”向催化中心的移动。与 apo 或 UDPG 复合物结构相比,这些构象变化使 MoTps1 处于“关闭”状态。通过解析 EcOtsA apo 结构,我们证实类似的配体结合诱导的构象变化也存在于 EcOtsA 中,尽管没有涉及结构重排。基于我们的研究和以前的研究,我们提出了 Tps1 催化过程的模型。我们的研究为 MoTps1、Tps1 家族和基于结构的抗真菌药物设计提供了新的信息。