Suppr超能文献

作为人工肌肉的驱动聚乙二醇二丙烯酸酯/丙烯酸水凝胶的表征与优化

Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles.

作者信息

Browe Daniel P, Wood Caroline, Sze Matthew T, White Kristopher A, Scott Tracy, Olabisi Ronke M, Freeman Joseph W

机构信息

School of Engineering, Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.

School of Engineering, Biomedical Engineering, The College of New Jersey, Ewing Township, NJ 08168, USA.

出版信息

Polymer (Guildf). 2017 May 19;117:331-341. doi: 10.1016/j.polymer.2017.04.044. Epub 2017 Apr 18.

Abstract

Large volume deficiencies in skeletal muscle tissue fail to heal with conservative treatments, and improved treatment methods are needed. Tissue engineered scaffolds for skeletal muscle need to mimic the optimal environment for muscle development by providing the proper electric, mechanical, and chemical cues. Electroactive polymers, polymers that change in size or shape in response to an electric field, may be able to provide the optimal environment for muscle growth. In this study, an electroactive polymer made from poly(ethylene glycol) diacrylate (PEGDA) and acrylic acid (AA) is characterized and optimized for movement and biocompatibility. Hydrogel sample thickness, overall polymer concentration, and the ratio of PEGDA to AA were found to significantly impact the actuation response. C2C12 mouse myoblast cells attached and proliferated on hydrogel samples with various ratios of PEGDA to AA. Future experiments will produce hydrogel samples combined with aligned guidance cues in the form of electrospun fibers to provide a favorable environment for muscle development.

摘要

骨骼肌组织中的大量缺损无法通过保守治疗愈合,因此需要改进治疗方法。用于骨骼肌的组织工程支架需要通过提供适当的电、机械和化学信号来模拟肌肉发育的最佳环境。电活性聚合物,即响应电场而改变大小或形状的聚合物,可能能够为肌肉生长提供最佳环境。在本研究中,对一种由聚(乙二醇)二丙烯酸酯(PEGDA)和丙烯酸(AA)制成的电活性聚合物进行了表征,并针对运动和生物相容性进行了优化。发现水凝胶样品厚度、聚合物总浓度以及PEGDA与AA的比例对驱动响应有显著影响。不同PEGDA与AA比例的水凝胶样品上附着并增殖了C2C12小鼠成肌细胞。未来的实验将制备结合有静电纺丝纤维形式的排列引导信号的水凝胶样品,以为肌肉发育提供有利环境。

相似文献

1
Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles.
Polymer (Guildf). 2017 May 19;117:331-341. doi: 10.1016/j.polymer.2017.04.044. Epub 2017 Apr 18.
2
The Use of Collagen Methacrylate in Actuating Polyethylene Glycol Diacrylate-Acrylic Acid Scaffolds for Muscle Regeneration.
Ann Biomed Eng. 2023 Jun;51(6):1165-1180. doi: 10.1007/s10439-023-03139-8. Epub 2023 Feb 28.
4
A cholecystic extracellular matrix-based hybrid hydrogel for skeletal muscle tissue engineering.
J Biomed Mater Res A. 2020 Sep;108(9):1922-1933. doi: 10.1002/jbm.a.36955. Epub 2020 May 6.
5
Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels.
Acta Biomater. 2017 Feb;49:247-259. doi: 10.1016/j.actbio.2016.10.041. Epub 2016 Nov 14.
6
Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair.
J Biomater Appl. 2022 Jan;36(6):1019-1032. doi: 10.1177/08853282211044853. Epub 2021 Oct 4.
7
Construction of tissue-engineered skin with rete ridges using co-network hydrogels of gelatin methacrylated and poly(ethylene glycol) diacrylate.
Mater Sci Eng C Mater Biol Appl. 2021 Oct;129:112360. doi: 10.1016/j.msec.2021.112360. Epub 2021 Aug 9.
8
Mechanical behavior of bioactive poly(ethylene glycol) diacrylate matrices for biomedical application.
J Mech Behav Biomed Mater. 2020 Oct;110:103885. doi: 10.1016/j.jmbbm.2020.103885. Epub 2020 Jun 2.
9
Engineering biologically extensible hydrogels using photolithographic printing.
Acta Biomater. 2018 Jul 15;75:52-62. doi: 10.1016/j.actbio.2018.05.036. Epub 2018 May 24.

引用本文的文献

1
Tacrolimus-Loaded Superabsorbent Hydrogels: Formulation, Evaluation, and Therapeutic Potential.
ACS Omega. 2025 Aug 21;10(34):38555-38568. doi: 10.1021/acsomega.5c02881. eCollection 2025 Sep 2.
2
Tuning Dry and Wet Adhesion with a Branched Supramolecular Polymer Solution.
Small Sci. 2023 Jun 11;3(7):2300044. doi: 10.1002/smsc.202300044. eCollection 2023 Jul.
5
3D Printing of Noncytotoxic High-Resolution Microchannels in Bisphenol-A Ethoxylate Dimethacrylate Tissue-Mimicking Materials.
3D Print Addit Manuf. 2023 Oct 1;10(5):1101-1109. doi: 10.1089/3dp.2021.0235. Epub 2023 Oct 10.
7
Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties.
Stem Cell Res Ther. 2023 Apr 15;14(1):90. doi: 10.1186/s13287-023-03310-x.
8
The Use of Collagen Methacrylate in Actuating Polyethylene Glycol Diacrylate-Acrylic Acid Scaffolds for Muscle Regeneration.
Ann Biomed Eng. 2023 Jun;51(6):1165-1180. doi: 10.1007/s10439-023-03139-8. Epub 2023 Feb 28.
10
Static and Dynamic Biomaterial Engineering for Cell Modulation.
Nanomaterials (Basel). 2022 Apr 17;12(8):1377. doi: 10.3390/nano12081377.

本文引用的文献

3
Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds.
Int J Nanomedicine. 2011;6:2483-97. doi: 10.2147/IJN.S24073. Epub 2011 Oct 20.
5
Engineering skeletal muscle tissue--new perspectives in vitro and in vivo.
J Cell Mol Med. 2010 Nov;14(11):2622-9. doi: 10.1111/j.1582-4934.2010.01183.x.
6
Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers.
Cell Mol Bioeng. 2008 Sep 1;1(2-3):133-145. doi: 10.1007/s12195-008-0021-y.
7
Development and progress of engineering of skeletal muscle tissue.
Tissue Eng Part B Rev. 2009 Sep;15(3):319-31. doi: 10.1089/ten.teb.2009.0092.
8
The stimulation of myoblast differentiation by electrically conductive sub-micron fibers.
Biomaterials. 2009 Apr;30(11):2038-47. doi: 10.1016/j.biomaterials.2008.12.063. Epub 2009 Jan 14.
9
Restoration of elbow function in severe brachial plexus paralysis via muscle transfers.
Injury. 2008 Sep;39 Suppl 3:S15-22. doi: 10.1016/j.injury.2008.06.008. Epub 2008 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验