Suppr超能文献

对1110株分离株进行临床耐药基因组筛选可有效发现具有诊断意义的抗生素耐药生物标志物和潜在的新型耐药机制。

Clinical Resistome Screening of 1,110 Isolates Efficiently Recovers Diagnostically Relevant Antibiotic Resistance Biomarkers and Potential Novel Resistance Mechanisms.

作者信息

Volz Carsten, Ramoni Jonas, Beisken Stephan, Galata Valentina, Keller Andreas, Plum Achim, Posch Andreas E, Müller Rolf

机构信息

Helmholtz International Laboratory, Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.

Ares Genetics GmbH, Vienna, Austria.

出版信息

Front Microbiol. 2019 Aug 13;10:1671. doi: 10.3389/fmicb.2019.01671. eCollection 2019.

Abstract

Multidrug-resistant pathogens represent one of the biggest global healthcare challenges. Molecular diagnostics can guide effective antibiotics therapy but relies on validated, predictive biomarkers. Here we present a novel, universally applicable workflow for rapid identification of antimicrobial resistance (AMR) biomarkers from clinical isolates and quantitatively evaluate the potential to recover causal biomarkers for observed resistance phenotypes. For this, a metagenomic plasmid library from 1,110 clinical isolates was created and used for high-throughput screening to identify biomarker candidates against Tobramycin (TOB), Ciprofloxacin (CIP), and Trimethoprim-Sulfamethoxazole (TMP-SMX). Identified candidates were further validated and also evaluated for their diagnostic performance based on matched genotype-phenotype data. AMR biomarkers recovered by the metagenomics screening approach mechanistically explained 77% of observed resistance phenotypes for Tobramycin, 76% for Trimethoprim-Sulfamethoxazole, and 20% Ciprofloxacin. Sensitivity for Ciprofloxacin resistance detection could be improved to 97% by complementing results with AMR biomarkers that are undiscoverable due to intrinsic limitations of the workflow. Additionally, when combined in a multiplex diagnostic panel, the identified AMR biomarkers reached promising positive and negative predictive values of up to 97 and 99%, respectively. Finally, we demonstrate that the developed workflow can be used to identify potential novel resistance mechanisms.

摘要

多重耐药病原体是全球医疗保健面临的最大挑战之一。分子诊断可以指导有效的抗生素治疗,但依赖于经过验证的预测性生物标志物。在此,我们提出了一种新颖的、普遍适用的工作流程,用于从临床分离株中快速鉴定抗菌药物耐药性(AMR)生物标志物,并定量评估恢复观察到的耐药表型的因果生物标志物的潜力。为此,构建了一个来自1110株临床分离株的宏基因组质粒文库,并用于高通量筛选,以鉴定针对妥布霉素(TOB)、环丙沙星(CIP)和甲氧苄啶-磺胺甲恶唑(TMP-SMX)的生物标志物候选物。对鉴定出的候选物进行进一步验证,并根据匹配的基因型-表型数据评估其诊断性能。通过宏基因组学筛选方法恢复的AMR生物标志物从机制上解释了77%的妥布霉素观察到的耐药表型、76%的甲氧苄啶-磺胺甲恶唑耐药表型和20%的环丙沙星耐药表型。由于工作流程的固有局限性,一些无法发现的AMR生物标志物可补充结果,从而将环丙沙星耐药性检测的灵敏度提高到97%。此外,当组合在一个多重诊断面板中时,鉴定出的AMR生物标志物分别达到了高达97%和99%的有前景的阳性和阴性预测值。最后,我们证明所开发的工作流程可用于识别潜在的新耐药机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e074/6700387/a2d22b663bba/fmicb-10-01671-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验