Suppr超能文献

多元醇介导法合成磁赤铁矿纳米花的形成机制

Formation Mechanism of Maghemite Nanoflowers Synthesized by a Polyol-Mediated Process.

作者信息

Gavilán Helena, Sánchez Elena H, Brollo María E F, Asín Laura, Moerner Kimmie K, Frandsen Cathrine, Lázaro Francisco J, Serna Carlos J, Veintemillas-Verdaguer Sabino, Morales M Puerto, Gutiérrez Lucía

机构信息

Materials Science Factory, Institute of Materials Science of Madrid/CSIC (ICMMCSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.

Institute of Materials Science of Aragón, Universidad de Zaragoza, CSIC and CIBER-BBN, Campus Río Ebro, Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain.

出版信息

ACS Omega. 2017 Oct 26;2(10):7172-7184. doi: 10.1021/acsomega.7b00975. eCollection 2017 Oct 31.

Abstract

Magnetic nanoparticles are being developed as structural and functional materials for use in diverse areas, including biomedical applications. Here, we report the synthesis of maghemite (γ-FeO) nanoparticles with distinct morphologies: single-core and multicore, including hollow spheres and nanoflowers, prepared by the polyol process. We have used sodium acetate to control the nucleation and assembly process to obtain the different particle morphologies. Moreover, from samples obtained at different time steps during the synthesis, we have elucidated the formation mechanism of the nanoflowers: the initial phases of the reaction present a lepidocrocite (γ-FeOOH) structure, which suffers a fast dehydroxylation, transforming to an intermediate "undescribed" phase, possibly a partly dehydroxylated lepidocrocite, which after some incubation time evolves to maghemite nanoflowers. Once the nanoflowers have been formed, a crystallization process takes place, where the γ-FeO crystallites within the nanoflowers grow in size (from ∼11 to 23 nm), but the particle size of the flower remains essentially unchanged (∼60 nm). Samples with different morphologies were coated with citric acid and their heating capacity in an alternating magnetic field was evaluated. We observe that nanoflowers with large cores (23 nm, controlled by annealing) densely packed (tuned by low NaAc concentration) offer 5 times enhanced heating capacity compared to that of the nanoflowers with smaller core sizes (15 nm), 4 times enhanced heating effect compared to that of the hollow spheres, and 1.5 times enhanced heating effect compared to that of single-core nanoparticles (36 nm) used in this work.

摘要

磁性纳米颗粒正被开发为用于包括生物医学应用在内的各种领域的结构和功能材料。在此,我们报告了通过多元醇法制备的具有不同形态的磁赤铁矿(γ-Fe₂O₃)纳米颗粒:单核和多核,包括空心球和纳米花。我们使用醋酸钠来控制成核和组装过程以获得不同的颗粒形态。此外,从合成过程中不同时间步长获得的样品中,我们阐明了纳米花的形成机制:反应的初始阶段呈现出纤铁矿(γ-FeOOH)结构,该结构经历快速脱羟基作用,转变为中间的“未描述”相,可能是部分脱羟基化的纤铁矿,经过一段时间的孵育后演变成磁赤铁矿纳米花。一旦纳米花形成,就会发生结晶过程,其中纳米花内的γ-Fe₂O₃微晶尺寸增大(从约11纳米增大到23纳米),但花的粒径基本保持不变(约60纳米)。用柠檬酸包覆具有不同形态的样品,并评估它们在交变磁场中的加热能力。我们观察到,具有大核心(23纳米,通过退火控制)且紧密堆积(通过低醋酸钠浓度调节)的纳米花与具有较小核心尺寸(15纳米)的纳米花相比,加热能力提高了5倍,与空心球相比加热效果提高了4倍,与本工作中使用的单核纳米颗粒(36纳米)相比加热效果提高了1.5倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/de27e2cc54f7/ao-2017-00975y_0010.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验