文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Formation Mechanism of Maghemite Nanoflowers Synthesized by a Polyol-Mediated Process.

作者信息

Gavilán Helena, Sánchez Elena H, Brollo María E F, Asín Laura, Moerner Kimmie K, Frandsen Cathrine, Lázaro Francisco J, Serna Carlos J, Veintemillas-Verdaguer Sabino, Morales M Puerto, Gutiérrez Lucía

机构信息

Materials Science Factory, Institute of Materials Science of Madrid/CSIC (ICMMCSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.

Institute of Materials Science of Aragón, Universidad de Zaragoza, CSIC and CIBER-BBN, Campus Río Ebro, Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain.

出版信息

ACS Omega. 2017 Oct 26;2(10):7172-7184. doi: 10.1021/acsomega.7b00975. eCollection 2017 Oct 31.


DOI:10.1021/acsomega.7b00975
PMID:31457296
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6645291/
Abstract

Magnetic nanoparticles are being developed as structural and functional materials for use in diverse areas, including biomedical applications. Here, we report the synthesis of maghemite (γ-FeO) nanoparticles with distinct morphologies: single-core and multicore, including hollow spheres and nanoflowers, prepared by the polyol process. We have used sodium acetate to control the nucleation and assembly process to obtain the different particle morphologies. Moreover, from samples obtained at different time steps during the synthesis, we have elucidated the formation mechanism of the nanoflowers: the initial phases of the reaction present a lepidocrocite (γ-FeOOH) structure, which suffers a fast dehydroxylation, transforming to an intermediate "undescribed" phase, possibly a partly dehydroxylated lepidocrocite, which after some incubation time evolves to maghemite nanoflowers. Once the nanoflowers have been formed, a crystallization process takes place, where the γ-FeO crystallites within the nanoflowers grow in size (from ∼11 to 23 nm), but the particle size of the flower remains essentially unchanged (∼60 nm). Samples with different morphologies were coated with citric acid and their heating capacity in an alternating magnetic field was evaluated. We observe that nanoflowers with large cores (23 nm, controlled by annealing) densely packed (tuned by low NaAc concentration) offer 5 times enhanced heating capacity compared to that of the nanoflowers with smaller core sizes (15 nm), 4 times enhanced heating effect compared to that of the hollow spheres, and 1.5 times enhanced heating effect compared to that of single-core nanoparticles (36 nm) used in this work.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/c357653b594f/ao-2017-00975y_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/de27e2cc54f7/ao-2017-00975y_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/c0eba8a59fc3/ao-2017-00975y_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/60828dd69c80/ao-2017-00975y_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/cd093daceb3c/ao-2017-00975y_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/2f815fe955fe/ao-2017-00975y_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/d31643c801a1/ao-2017-00975y_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/9b45fee05ea3/ao-2017-00975y_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/c187b4e8d88e/ao-2017-00975y_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/ce47a9d5464e/ao-2017-00975y_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/c357653b594f/ao-2017-00975y_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/de27e2cc54f7/ao-2017-00975y_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/c0eba8a59fc3/ao-2017-00975y_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/60828dd69c80/ao-2017-00975y_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/cd093daceb3c/ao-2017-00975y_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/2f815fe955fe/ao-2017-00975y_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/d31643c801a1/ao-2017-00975y_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/9b45fee05ea3/ao-2017-00975y_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/c187b4e8d88e/ao-2017-00975y_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/ce47a9d5464e/ao-2017-00975y_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6253/6645291/c357653b594f/ao-2017-00975y_0008.jpg

相似文献

[1]
Formation Mechanism of Maghemite Nanoflowers Synthesized by a Polyol-Mediated Process.

ACS Omega. 2017-10-26

[2]
Tuning Sizes, Morphologies, and Magnetic Properties of Monocore Versus Multicore Iron Oxide Nanoparticles through the Controlled Addition of Water in the Polyol Synthesis.

Inorg Chem. 2017-7-17

[3]
Stable Iron Oxide Nanoflowers with Exceptional Magnetic Heating Efficiency: Simple and Fast Polyol Synthesis.

ACS Appl Mater Interfaces. 2021-9-29

[4]
Maghemite (γ-FeO) and γ-FeO-TiO Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency.

Materials (Basel). 2021-9-30

[5]
Structure-Function Relationship of Iron Oxide Nanoflowers: Optimal Sizes for Magnetic Hyperthermia Depending on Alternating Magnetic Field Conditions.

Chemphyschem. 2024-11-18

[6]
Structure-Property-Function Relationships of Iron Oxide Multicore Nanoflowers in Magnetic Hyperthermia and Photothermia.

ACS Nano. 2022-1-25

[7]
Morphological, Magnetic and Optical Properties of -Fe₂O₃ Nanoflowers.

J Nanosci Nanotechnol. 2018-9-1

[8]
Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles.

J Colloid Interface Sci. 2008-1-1

[9]
Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity.

Nanomaterials (Basel). 2023-2-26

[10]
Direct observation of the growth process of MgO nanoflowers by a simple chemical route.

Small. 2005-4

引用本文的文献

[1]
From Structure to Function: Zn/Mn-Modified Maghemite as an Advanced Nanoplatform for Magnetic Hyperthermia and Radionuclide Therapy.

ACS Appl Mater Interfaces. 2025-8-20

[2]
Evaluating Manganese-Doped Magnetic Nanoflowers for Biocompatibility and In Vitro Magnetic Hyperthermia Efficacy.

Pharmaceutics. 2025-3-18

[3]
Key factors influencing magnetic nanoparticle-based photothermal therapy: physicochemical properties, irradiation power, and particle concentration .

Nanoscale Adv. 2024-11-12

[4]
Transforming cancer detection and treatment with nanoflowers.

Med Oncol. 2024-10-22

[5]
Synthesis, Characterization, and Therapeutic Efficacy of Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors.

Pharmaceutics. 2023-7-13

[6]
Cubic Mesocrystal Magnetic Iron Oxide Nanoparticle Formation by Oriented Aggregation of Cubes in Organic Media: A Rational Design to Enhance the Magnetic Hyperthermia Efficiency.

ACS Appl Mater Interfaces. 2023-7-12

[7]
Enhanced detoxification of Cr by adsorption on spherical and flower-like manganese ferrite nanostructures.

Nanoscale Adv. 2023-1-16

[8]
Influence of the hierarchical architecture of multi-core iron oxide nanoflowers on their magnetic properties.

Sci Rep. 2023-4-7

[9]
Magnetic Nanoclusters Stabilized with Poly[3,4-Dihydroxybenzhydrazide] as Efficient Therapeutic Agents for Cancer Cells Destruction.

Nanomaterials (Basel). 2023-3-3

[10]
Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity.

Nanomaterials (Basel). 2023-2-26

本文引用的文献

[1]
Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents.

Nanoscale. 2016-2-14

[2]
A simple model of burst nucleation.

Phys Chem Chem Phys. 2015-8-28

[3]
Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications.

Dalton Trans. 2015-2-21

[4]
High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions.

Nanoscale. 2015-2-7

[5]
Mechanisms of nucleation and growth of nanoparticles in solution.

Chem Rev. 2014-8-13

[6]
Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs.

Biomaterials. 2014-5-9

[7]
Assembly-mediated interplay of dipolar interactions and surface spin disorder in colloidal maghemite nanoclusters.

Nanoscale. 2014-4-7

[8]
Steric-repulsion-based magnetically responsive photonic crystals.

Adv Mater. 2013-11-27

[9]
Magnetic fluid hyperthermia: advances, challenges, and opportunity.

Int J Hyperthermia. 2013-10-9

[10]
Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents.

ACS Nano. 2012-11-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索