Suppr超能文献

通过超临界流体法制备用于混合镁锂离子电池的剥离型二硫化钼和二硒化钼纳米片

Exfoliated MoS and MoSe Nanosheets by a Supercritical Fluid Process for a Hybrid Mg-Li-Ion Battery.

作者信息

Truong Quang Duc, Kempaiah Devaraju Murukanahally, Nakayasu Yuta, Tamura Naoki, Sasaki Yoshikazu, Tomai Takaaki, Honma Itaru

机构信息

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, 2-1-1, Aobaku, Sendai 980-8577, Japan.

Field Solution Division, JEOL Ltd., 1156 Nakagamicho, Akishima, Tokyo 196-0022, Japan.

出版信息

ACS Omega. 2017 May 26;2(5):2360-2367. doi: 10.1021/acsomega.7b00379. eCollection 2017 May 31.

Abstract

The ultrathin two-dimensional nanosheets of layered transition-metal dichalcogenides (TMDs) have attracted great interest as an important class of materials for fundamental research and technological applications. Solution-phase processes are highly desirable to produce a large amount of TMD nanosheets for applications in energy conversion and energy storage such as catalysis, electronics, rechargeable batteries, and capacitors. Here, we report a rapid exfoliation by supercritical fluid processing for the production of MoS and MoSe nanosheets. Atomic-resolution high-angle annular dark-field imaging reveals high-quality exfoliated MoS and MoSe nanosheets with hexagonal structures, which retain their 2H stacking sequence. The obtained nanosheets were tested for their electrochemical performance in a hybrid Mg-Li-ion battery as a proof of functionality. The MoS and MoSe nanosheets exhibited the specific capacities of 81 and 55 mA h g, respectively, at a current rate of 20 mA g.

摘要

层状过渡金属二硫属化物(TMDs)的超薄二维纳米片作为一类重要的材料,在基础研究和技术应用方面引起了极大的关注。液相法非常适合大量制备TMD纳米片,用于能量转换和能量存储应用,如催化、电子学、可充电电池和电容器。在此,我们报道了一种通过超临界流体处理快速剥离制备MoS和MoSe纳米片的方法。原子分辨率的高角度环形暗场成像显示,高质量的剥离MoS和MoSe纳米片具有六边形结构,并保留其2H堆积序列。作为功能验证,对所获得的纳米片在混合镁 - 锂离子电池中的电化学性能进行了测试。在20 mA g的电流速率下,MoS和MoSe纳米片的比容量分别为81和55 mA h g。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8b8/6640930/aeaf29b30311/ao-2017-00379n_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验